In this work the is considered on optimal control problem for discrete two parametric systems the Fornasini-Marchesini type. The first order necessary optimality conditions are obtained.

Key words: discrete two parametric system, 2-D discrete system, necessary optimality conditions, Lipshis condition, kuasidifferential functional.

Отримано: 02.06.2017
Крайові умови, що містять похідну по часу, знаходимо в уза-гальненій теорії теплопровідності [7], яка лежить в основі побудови узагальненої термомеханіки.

У випадку кусково-однорідних середовищ, що мають різні фізіко-технічні характеристики або моделюються за різними законами, похідні по часу входять і в умови спряження, а тому диференціальний оператор умови спряження в загальному випадку матиме вигляд: \(L_{jk} = \left(\alpha_{jk} + \delta_{jk} \frac{\partial}{\partial t} \right) \frac{\partial}{\partial x} + \beta_{jk} + \gamma_{jk} \frac{\partial}{\partial t}, \quad k = 1, 2, \quad j \) — номер точки спряження.

У цій статті розглядається мішана крайова задача для еволюційних рівнянь параболічного типу з операторами Бесселя-Лежандра-Ейлера на кусково-однорідному сегменті полярної осі з двома точками спряження та м’якими межами.

Основна частина. Розглянемо диференціальний оператор Бесселя \(B_{v, \alpha_i} = \frac{d^2}{dr^2} + (2\alpha_i + 1) r^{-1} \frac{d}{dr} - (v^2 - \alpha_i^2) r^{-2} \) [4], Ейлера \(B_{\alpha_2}^* = r^2 \frac{d^2}{dr^2} + (2\alpha_2 + 1) r \frac{d}{dr} + \alpha_2^2 \) [3] та Лежандра \(\Lambda_{(\mu)} = \frac{d^2}{dr^2} + \text{cth} r \frac{d}{dr} + \frac{\mu_1^2}{1 - \text{ch} r} + \frac{\mu_2^2}{1 + \text{ch} r} \) [1]. Нехай \(\theta(x) \) — одинична функція Гевісайда [10]. Утворимо гібридний диференціальний оператор (ГДО) \[M_{v,(\alpha)}^{(\mu)} = \theta(r) \theta(R_1 - r) a_1^2 B_{v, \alpha_i} + \theta(r - R_1) \theta(R_2 - r) a_2^2 \Lambda_{(\mu)} + \theta(r - R_2) \theta(R_3 - r) a_3^2 B_{\alpha_2}^* , \] де \(a_j > 0, \quad (j = 1, 3), \quad 2\alpha_i + 1 > 0, \quad (i = 1, 2) \quad \nu \geq \alpha_1, \quad (\alpha) = (\alpha_1, \alpha_2), \quad (\mu) = (\mu_1, \mu_2), \quad \mu_1 \geq \mu_2 \geq 0 .

Означення. Областю визначення ГДО \(M_{v,(\alpha)}^{(\mu)} \) назвемо множину \(G \) функцій \(g(r) = \theta(r)\theta(R_1 - r)g_1(r) + \theta(r - R_1)\theta(R_2 - r)g_2(r) + \theta(r - R_2) \times \theta(R_3 - r)g_3(r) \) з такими властивостями:

1) функція \(f(r) = M_{v,(\alpha)}^{(\mu)} [g(r)] \) неперервна на множині

\[\left(h_1 \frac{\partial}{\partial n} + h_2 \frac{\partial}{\partial t} + h_3 \right) T(M,t) \bigg|_\Gamma = g(P,t), \quad P \in \Gamma . \]
$I_2 = \{ r : r \in (0, R_1) \cup (R_1, R_2) \cup (R_2, R_3); R_3 < \infty \}$;

2) Функции $g_j(r)$ $(j, k = 1, 2)$ задовольняють умови спряження

$$\left[\left(\tilde{\alpha}_{j1}^k \frac{d}{dr} + \tilde{\beta}_{j1}^k \right) g_k(r) - \left(\tilde{\alpha}_{j2}^k \frac{d}{dr} + \tilde{\beta}_{j2}^k \right) g_{k+1}(r) \right]_{r=R_3} = 0;$$

(2)

3) Функции $g_j(r)$ задовольняють крайові умови

$$\lim_{r \to 0} \left[r^2 g_1(r) \right] = 0, \left(\tilde{\alpha}_{22}^3 \frac{d}{dr} + \tilde{\beta}_{22}^3 \right) g_3(r)_{r=R_1} = 0.$$ (3)

У рівняннях (2), (3) беруть участь коефіцієнти:

$$\tilde{\alpha}_{jm} = \alpha_{jm}^k - (\beta^2 + \gamma^2) \delta_{jm}, \quad \tilde{\beta}_{jm} = \beta_{jm}^k - (\beta^2 + \gamma^2) \gamma_{jm};$$

$$\gamma^2 \geq 0, \quad \beta — спектральний параметр.$$

Припустимо, що виконані умови на коефіцієнти: $\alpha_{jm}^k \geq 0$, $\beta_{jm}^k \geq 0$, $\delta_{jm} \geq 0$, $\gamma_{jm} \geq 0$; $c_{j1, k} = \alpha_{j1,2}^k \beta_{j1,2}^k - \alpha_{j1,2}^k \beta_{j1,2}^k$;

$$c_{11, k} \cdot c_{21, k} > 0, \quad c_{j2, k} = \delta_{j2,1}^k \gamma_{j2,1}^k - \delta_{j2,1}^k \gamma_{j2,1}^k = 0;$$

$$\alpha_{1j}^k \gamma_{1j}^k - \alpha_{2j}^k \gamma_{2j}^k = \beta_{1j}^k \delta_{1j}^k - \beta_{2j}^k \delta_{1j}^k, \quad j, m, k = 1, 2;$$

$$\tilde{\alpha}_{22}^3 = \alpha_{22}^3 - \delta_{22}^3 (\beta^2 + \gamma^2), \quad \tilde{\beta}_{22}^3 = \beta_{22}^3 - \gamma_{22}^3 (\beta^2 + \gamma^2);$$

$$| \alpha_{22}^3 | + | \beta_{22}^3 | \neq 0; \quad | \delta_{22}^3 | + | \gamma_{22}^3 | \neq 0.$$

Зачаєння 1. Для $u(r) \in G$ та $v(r) \in G$ з умов спряження (2) випливає базова тотожність

$$u'(R_k) v_k(R_k) - u_k(R_k) v'_k(R_k) =$$

$$= \frac{c_{21, k}}{c_{11, k}} \left[u_{k+1}(R_k) v_{k+1}(R_k) - u_{k+1}(R_k) v'_{k+1}(R_k) \right].$$

(4)

Визначимо величини

$$a_1^2 \sigma_1 = \frac{c_{11,1} c_{11,2} \text{sh} R_1}{c_{21,1} c_{21,2} \text{sh} R_2} \frac{R_2^{\alpha_{1}^1} + 1}{R_1^{\alpha_{1}^1} + 1}, \quad a_2^2 \sigma_2 = \frac{c_{11,2} R_2^{\alpha_{2}^1} + 1}{c_{21,1} \text{sh} R_2}, \quad a_3^2 \sigma_3 = 1,$$

вагову функцію

$$\sigma(r) = \theta(r) \theta(R_1 - r) \sigma_1 r^{\alpha_{1}^1 + 1} + \theta(r - R_1) \theta(R_2 - r) \sigma_2 \text{sh} r +$$

$$+ \theta(r - R_2) \theta(R_3 - r) \sigma_3 r^{\alpha_{3}^1 + 1}$$

(5)

та скалярний добуток.
Лема 1. ГДО $M_{v,\alpha}(\mu)$ самоспряженний.

Доведення. Згідно правила (6) скалярний добуток

$$
(M_{v,\alpha}(\mu)[u], v) = \int_0^{R_1} a_1^2 B_{v,\alpha}[u_1] \cdot v_1(r) \sigma_1 r^{2\alpha_1+1} dr + \int_0^{R_1} a_2^2 \Lambda\mu[u_2] \cdot v_2(r) \sigma_2 sh r dr + \int_0^{R_2} a_3^2 B_{\alpha_2}^*[u_3] \cdot v_3(r) \sigma_3 r^{2\alpha_2-1} dr.
$$

Проінтегруємо під знаками інтегралів два рази частинами:

$$
(M_{v,\alpha}(\mu)[u], v) = \left[\sigma_1 r^{2\alpha_1+1} a_1^2 \left(u_1'(r) v_1(r) - u_1(r) v_1'(r)\right)\right]_0^{R_1} +
$$

$$
+ \int_0^{R_1} u_1(r) \left(a_1^2 B_{v,\alpha}[v_1(r)]\right) \sigma_1 r^{2\alpha_1+1} dr + \left[a_2^2 \sigma_2 sh r (u_2'(r) v_2(r) - u_2(r) v_2'(r))\right]_0^{R_1} +
$$

$$
+ \int_0^{R_2} u_2(r) \left(a_3^2 B_{\alpha_2}^*[v_3(r)]\right) \sigma_3 r^{2\alpha_2-1} dr.
$$

Внаслідок базової тотожності (4) в точці $r = R_1$ маємо:

$$
\sigma_1 R_1^{2\alpha_1+1} (u_1'(R_1) v_1(R_1) - u_1(R_1) v_1'(R_1)) - \sigma_2 \sh R_1 (u_2'(R_1) v_2(R_1) - u_2(R_1) v_2'(R_1)) = 0
$$

тому що в силу вибору σ_1, σ_2 вираз

$$
\left(a_1^2 \sigma_1 R_1^{2\alpha_1+1} \frac{c_{21,1}}{c_{11,1}} - a_2^2 \sigma_2 \sh R_1 \right) = \frac{c_{11,1} c_{11,2}}{c_{21,1} c_{21,2}} \cdot \sh R_1 R_1^{2\alpha_1+1} \frac{c_{21,1}}{c_{11,1}} -
$$
Внаслідок базової тотожності (4) в точці $r = R_2$ маємо:

$$
\begin{align*}
& a_2^2 \sigma_2 \sh R_2 \left(u'_2(R_2)v_2(R_2) - u_2(R_2)v'_2(R_2) \right) - \\
& - \sigma_3 a_3^2 R_2^{2\alpha_3+1} \left(u'_3(R_2)v_3(R_2) - u_3(R_2)v'_3(R_2) \right) = \\
& = \left(\frac{a_2^2 \sigma_2}{c_{11,2}} R_2^{2\alpha_3+1} - \frac{\sigma_3 a_3^2 R_2^{2\alpha_3+1}}{c_{11,2}} \right) \left(u'_3(R_2)v_3(R_2) - u_3(R_2)v'_3(R_2) \right) = \\
& = R_2^{2\alpha_3+1} (1 - 1) \left(u'_3(R_2)v_3(R_2) - u_3(R_2)v'_3(R_2) \right) \equiv 0 .
\end{align*}
$$

При $\alpha_{22}^3 \neq 0$ знаходимо, що

$$
\begin{align*}
& \sigma_3 a_3^2 R_2^{2\alpha_3+1} \left(u'_3(R_2)v_3(R_2) - u_3(R_2)v'_3(R_2) \right) = \sigma_3 a_3^2 R_2^{2\alpha_3+1} \left(\alpha_{22}^3 \right)^{-1} \times \\
& \times \left\{ \left[\alpha_{22}^3 \frac{du_3}{dr} + \beta_{22}^3 u_3(r) \right] \right\}_{r=R_3} v_3(R_3) - \\
& - \left\{ \left[\alpha_{22}^3 \frac{dv_3}{dr} + \beta_{22}^3 v_3(r) \right] \right\}_{r=R_3} u_3(R_3) \equiv 0 .
\end{align*}
$$

В силу умови обмеження в точці $r = 0$ позаінтегральний член в точці $r = 0$ перетворюється в нуль.

Внаслідок (9), (10), (11) рівність (8) набуває вигляду:

$$
\left(\begin{array}{c}
M_{\nu,(\mu)}^{(\mu)} \left(u(r) , v(r) \right) \end{array} \right) = \left(\begin{array}{c}
u(r) \end{array} \right) .
$$

Рівність (12) означає, що ГДО $M_{\nu,(\mu)}^{(\mu)}$ самоспряжений оператор.

Лему доведено.

Оскільки ГДО $M_{\nu,(\mu)}^{(\mu)}$ самоспряжений і не має на множині I_2 ні одної особливої точки, то його спектр дійсний і дискретний [6].

Власні елементи ГДО $M_{\nu,(\mu)}^{(\mu)}$ (власні числа та відповідні ім власні функції) знайдемо в результаті розв’язання відповідної задачі Штурма–Ліувілля:

- побудувати на множині I_2 розв’язок системи диференціальних рівнянь.

132
\[
\left(B_{v,\alpha_i} + b_i^2 \right) V_{v,(\alpha);1}^{(\mu)} (r, \beta) = 0, \ r \in (0, R_1),
\]
\[
\left(\Lambda_\mu + b_2^2 \right) V_{v,(\alpha);2}^{(\mu)} (r, \beta) = 0, \ r \in (R_1, R_2),
\]
\[
\left(B_{\alpha_2} + b_3^2 \right) V_{v,(\alpha);3}^{(\mu)} (r, \beta) = 0, \ r \in (R_2, R_3);
\] (13)

- з крайовими умовами (3) та умовами спряження (2).

Тут \(b_j = a_j^{-1} (\beta^2 + k_j^2)^{1/2}, \ k_j^2 \geq 0, \ j = 1, 3; \ V_{v,(\alpha);j}^{(\mu)} (r, \beta) \) — компоненти спектральної функції

\[
V_{v,(\alpha)}^{(\mu)} (r, \beta) = \theta(r) \theta(R_1 - r) V_{v,(\alpha);1}^{(\mu)} (r, \beta) + \sum_{k=1}^{2} \theta(r - R_k) \theta(R_{k+1} - r) V_{v,(\alpha);k+1}^{(\mu)} (r, \beta).
\] (14)

Фундаментальну систему розв’язків для диференціального рівняння Бесселя \(\left(B_{v,\alpha_i} + b_i^2 \right) v = 0 \) складають функції \(J_{v,\alpha_i} (b_i r) \) та \(N_{v,\alpha_i} (b_i r) \) [4]; фундаментальну систему розв’язків для диференціального рівняння Лежандра \(\left(\Lambda_\mu + b_2^2 \right) v = 0 \) складають функції \(v_1 = A_{v_2} (\text{ch} r) \) та \(v_2 = B_{v_2} (\text{ch} r), \ v_2^* = -1/2 + i b_2 [1] \); фундаментальну систему розв’язків для диференціального рівняння Ейлера

\[
\left(B_{\alpha_2} + b_3^2 \right) v = 0
\] складають функції \(v_{\alpha_2,1} (r, b_3) = r^{-\alpha_2} \cos(b_3 \ln r) \) та \(v_{\alpha_2,2} (r, b_3) = r^{-\alpha_2} \sin(b_3 \ln r) \) [3]. Якщо в силу лінійності задачі покласти

\[
V_{v,(\alpha);1}^{(\mu)} (r, \beta) = A_1 J_{v,\alpha_i} (b_i r), \ r \in (0, R_1),
\]

\[
V_{v,(\alpha);2}^{(\mu)} (r, \beta) = A_2 A_{v_2} (\text{ch} r) + B_2 B_{v_2} (\text{ch} r), \ r \in (R_1, R_2),
\]

\[
V_{v,(\alpha);3}^{(\mu)} (r, \beta) = A_3 v_{\alpha_2,1} (r, b_3) + B_3 v_{\alpha_2,2} (r, b_3), \ r \in (R_2, R_3),
\] то умови спряження (2) й крайова умова в точці \(r = R_3 \) дають однорідну алгебраїчну систему з \(5 \) рівняння для визначення \(5 \) невідомих величин \(A_j \ (j = 1, 3) \) та \(B_2, B_3 \ :

\[
u_{v,\alpha_i; j1} (b_i R_j) A_1 - Y_{v,(\mu);11}^{(\mu)} (\text{ch} R_j) A_2 - Y_{v,(\mu);12}^{(\mu)} (\text{ch} R_j) B_2 = 0, \ j = 1, 2;
\]

\[
Y_{v_2;j1}^{(\mu),21} (\text{ch} R_2) A_2 + Y_{v_2;j1}^{(\mu),22} (\text{ch} R_2) B_2 - Y_{\alpha_2;j2}^{21} (b_3, R_2) A_3 - Y_{\alpha_2;j2}^{22} (b_3, R_2) B_3 = 0,
\]

\[
Y_{\alpha_2;j2}^{31} (b_3, R_3) A_3 - Y_{\alpha_2;j2}^{32} (b_3, R_3) B_3 = 0.
\] (16)
У системі (16) беруть участь функції

\[u_{\nu, \alpha_i; j 1}(b_1 R_1) = \left(\tilde{\alpha}_{j 1} \frac{V - \alpha_1}{R_1} + \tilde{\beta}_{j 1} \right) J_{\nu, \alpha_i}(b_1 R_1) - \tilde{\alpha}_{j 1} R_1 b_1^2 J_{\nu + 1, \alpha_i + 1}(b_1 R_1) , \]

\[Y_{v_j; j 1}^{(\mu)1}(ch R_m) = \left(\tilde{\alpha} m_{j k} d / dr + \tilde{\beta} m_{j k} \right) A_{v \nu}^{(\mu)}(ch r) \bigg|_{r=R_m} , \]

\[Y_{v_j; j 1}^{(\mu)2}(ch R_m) = \left(\tilde{\alpha} m_{j k} d / dr + \tilde{\beta} m_{j k} \right) B_{v \nu}^{(\mu)}(ch r) \bigg|_{r=R_m} , \]

\[Y_{\alpha_1; j k}^{(\mu)1}(b_3, R_m) = \left(\tilde{\beta} m_{j k} - \tilde{\alpha} m_{j k} R_m^{-1} \alpha_2 \right) \cos(b_3 \ln R_m) - b_3 R_m^{-1} \tilde{\alpha} m_{j k} \sin(b_3 \ln R_m) \bigg|_{r=R_m} R_m^{-\alpha_2} , \]

\[Y_{\alpha_2; j k}^{(\mu)2}(b_3, R_m) = \left(\tilde{\beta} m_{j k} - \tilde{\alpha} m_{j k} R_m^{-1} \alpha_2 \right) \sin(b_3 \ln R_m) - b_3 R_m^{-1} \tilde{\alpha} m_{j k} \cos(b_3 \ln R_m) \bigg|_{r=R_m} R_m^{-\alpha_2} . \]

Для того, щоб алгебраїчна система (16) мала ненульові розв'язки, необхідно й достатньо, щоб її визначник був рівним нулю [2]:

\[\delta (\mu)_{\nu, \alpha_1} (\beta) = \delta \alpha_1; 22 (b_3, R_2, R_3) a_{\nu, \alpha_1; 1}(\beta) - \delta \alpha_1; 12 (b_3, R_2, R_3) a_{\nu, \alpha_1; 2}(\beta) = 0 . \] (17)

У рівності (17) прийняті позначення:

\[a_{\nu, \alpha_1; j}(\beta) = u_{\nu, \alpha_1; j 1}(b_1 R_1) \delta (\mu)_{\nu, \alpha_1; j 1}(ch r_1, ch r_2) - \]

\[-u_{\nu, \alpha_1; j 1}(b_1 R_1) \delta (\mu)_{\nu, \alpha_1; j 1}(ch r_1, ch r_2) , \quad j = 1, 2 ; \]

\[\delta \alpha_1; j 2 (b_3, R_2, R_3) = Y_{\alpha_1; j 2}^{21}(b_3, R_2) Y_{\alpha_1; j 2}^{32}(b_3, R_3) - Y_{\alpha_1; j 2}^{22}(b_3, R_2) Y_{\alpha_1; j 2}^{31}(b_3, R_3) . \]

Алгебраїчне рівняння (17) — трансцендентне рівняння для обчислення власних чисел \(\beta_n \) ГДО \(M_{\nu, \alpha_1}(\beta_n) \) — корінь рівняння (17).

Підставимо в систему (16) \(\beta = \beta_n \) \((b_j(\beta_n) \equiv b_{jn}) \) й відкинемо останнє рівняння в силу лінійної залежності. При довільному \(A_1 \neq 0 \) для визначення \(A_2 , B_2 \) маємо алгебраїчну систему з двох рівнянь:

\[Y_{\nu_1; j 1}^{(\mu)11}(ch R_1) A_2 + Y_{\nu_1; j 1}^{(\mu)12}(ch R_1) B_2 = u_{\nu_1; j 1}(b_n R_1) A_1 , \]

\[j = 1, 2 ; \quad v_2^* = -1/2 + i b_{2n} . \] (18)

Визначник алгебраїчної системи (18)

\[q_{(\mu)}(\beta_n) = Y_{\nu_1; j 1}^{(\mu)11}(ch R_1) Y_{\nu_1; j 1}^{(\mu)12}(ch R_1) - \]

\[-Y_{\nu_1; j 1}^{(\mu)11}(ch R_1) Y_{\nu_1; j 1}^{(\mu)12}(ch R_1) = \frac{C_{21, 1}}{S_{(\mu)}(b_{2n}) \text{sh} R_1} \neq 0 , \]

\[S_{(\mu)}(b_{2n}) = \frac{2^{\mu} \pi^3 \cos(\mu_1 \pi) [\cos \mu_2 \pi + \cos \mu_1 \pi \text{ch}(2\pi b_{2n})]^{-1}}{2^{\mu_i} \left| \Gamma(1/2 + i b_{2n} + v_1^+) \right|^2 \left| \Gamma(1/2 + i b_{2n} + v_1^-) \right|^2} , \]

134
\[v_{12}^\pm = 1/2 (\mu_1 \pm \mu_2). \]

Алгебраїчна система (18) має єдний розв’язок [2]:

\[
A_2 = \frac{A_1}{q(\mu)} \left[u_{v,\alpha,1}^{(\mu)}(b_{nR_1}) Y_{v,\alpha,12}^{(\mu)}(ch R_1) - u_{v,\alpha,21}^{(\mu)}(b_{nR_1}) Y_{v,\alpha,22}^{(\mu)}(ch R_1) \right], \tag{19}
\]

\[
B_2 = \frac{A_1}{q(\mu)} \left[u_{v,\alpha,1}^{(\mu)}(b_{nR_1}) Y_{v,\alpha,11}^{(\mu)}(ch R_1) - u_{v,\alpha,21}^{(\mu)}(b_{nR_1}) Y_{v,\alpha,22}^{(\mu)}(ch R_1) \right].
\]

При визначених \(A_2, B_2 \) розглянемо алгебраїчну систему відно-сно величин \(A_3, B_3 \):

\[
Y_{\alpha,21,2}^{21}(b_{3n}, R_1) A_3 + Y_{\alpha,21,2}^{22}(b_{3n}, R_2) B_3 = -A_1[q(\mu)(\beta_n)]^{-1} a_{v,\alpha,i}^{(\mu)}(\beta_n); \quad j = 1, 2 \tag{20}
\]

Визначник алгебраїчної системи (20)

\[
q_{\alpha,i}(\beta_n) \equiv Y_{\alpha,12}^{21}(b_{3n}, R_2) Y_{\alpha,22}^{22}(b_{3n}, R_2) -
- Y_{\alpha,12}^{21}(b_{3n}, R_2) Y_{\alpha,22}^{22}(b_{3n}, R_2) = c_{21,2} b_{nR_2}^{-2(\alpha_i+1)} \neq 0.
\]

Алгебраїчна система (20) має єдний розв’язок [2]:

\[
A_1 = q(\mu)(\beta_n) q_{\alpha,i}(\beta_n), \quad A_3 = \omega_{v,\alpha,i}^{(\mu)}(\beta_n), \quad B_3 = -a_{v,\alpha,i}^{(\mu)}(\beta_n);
\]

\[
\omega_{v,\alpha,i}^{(\mu)}(\beta_n) = q_{\alpha,i}^{(\mu)}(\beta_n) Y_{v,\alpha,12}^{2j}(b_{3n}, R_2) -
- a_{v,\alpha,i}^{(\mu)}(\beta_n) Y_{v,\alpha,22}^{2j}(b_{3n}, R_2), \quad j = 1, 2. \tag{21}
\]

Підставимо в рівності (15) визначені формулами (19) та (21) величини \(A_j \) й \(B_k \). Одержимо шукані функції:

\[
V_{v,\alpha,1}^{(\mu)}(r, \beta_n) = q_{\alpha,i}^{(\mu)}(\beta_n) q_{\alpha,i}(\beta_n) J_{v,\alpha,i}(b_{nR_1}),
\]

\[
V_{v,\alpha,2}^{(\mu)}(r, \beta_n) = q_{\alpha,i}(\beta_n) \left[u_{v,\alpha,12}^{(\mu)}(b_{nR_1}) f_{v,\alpha,1}^{(\mu)}(ch R_1, ch r) -
- u_{v,\alpha,21}^{(\mu)}(b_{nR_1}) f_{v,\alpha,2}^{(\mu)}(ch R_1, ch r) \right], \tag{22}
\]

\[
f_{v,\alpha,1}^{(\mu)}(ch R_1, ch r) = Y_{v,\alpha,12}^{(\mu)}(ch R_1) B_{v,\alpha,12}^{(\mu)}(ch r) - Y_{v,\alpha,12}^{(\mu)}(ch R_1) A_{v,\alpha,12}^{(\mu)}(ch r);
\]

\[
V_{v,\alpha,3}^{(\mu)}(r, \beta_n) = \omega_{v,\alpha,3}^{(\mu)}(\beta_n) r^{-\alpha_2} \cos(b_{3n} ln r) - \omega_{v,\alpha,1}^{(\mu)}(\beta_n) r^{-\alpha_2} \sin(b_{3n} ln r).
\]

Згідно рівності (14) спектральна функція \(V_{v,\alpha}^{(\mu)}(r, \beta_n) \) визначена.

Відомо [5], що система \(\{ V_{v,\alpha}^{(\mu)}(r, \beta_n) \}_{n=1}^{\infty} \) власних функцій уза-гальнено ортогональна з ваговою функцією \(\sigma(r) \). Квадрат норми власної функції обчислюється за формулою [5]:

\[
\| V_{v,\alpha}^{(\mu)}(r, \beta_n) \|_2^2 = \int_0^{R_2} \left[V_{v,\alpha}^{(\mu)}(r, \beta_n) \right]^2 \sigma(r) \, dr + \theta_2(\beta_n, \beta_n). \tag{23}
\]

135
Наявність вагової функції \(\sigma(r) \), спектральної функції \(V_{v,\alpha}^{(\mu)}(r, \beta_n) \) та її квадрату норми \(||V_{v,\alpha}^{(\mu)}(r, \beta_n)||_1^2 \) дає можливість визначити пряме \(H_{v,\alpha}^{(\mu)} \) та обернене \(H_{v,\alpha}^{(-\mu)} \) скиченне гібридне інтегральне перетворення, породжене на множині \(I_2 \) ГДО \(M_{v,\alpha}^{(\mu)} \):

\[
H_{v,\alpha}^{(\mu)}[g(r)] = \int_0^R g(r) V_{v,\alpha}^{(\mu)}(r, \beta_n) \sigma(r) \, dr = \tilde{g}_n , \quad (24)
\]

\[
H_{v,\alpha}^{(-\mu)}[\tilde{g}_n] = \sum_{n=1}^\infty \frac{V_{v,\alpha}^{(\mu)}(r, \beta_n)}{||V_{v,\alpha}^{(\mu)}(r, \beta_n)||_1^2} \tilde{g}_n = g(r) . \quad (25)
\]

Математичним обґрунтуванням правил (24), (25) є твердження.

Теорема 1. Корені \(\beta_n \) трансцендентного рівняння \(\delta_{v,\alpha}^{(\mu)}(\beta) = 0 \) складають дискретний спектр ГДО \(M_{v,\alpha}^{(\mu)} \): дійсні, різні (за винятком, можливо, нуля), симетричні відносно точки \(\beta = 0 \) й на піввісі \(\beta > 0 \) утворюють монотонно зростаючу числову послідовність з єдиною граничною точкою \(\beta = \infty \).

Теорема 2. Система \(\{ V_{v,\alpha}^{(\mu)}(r, \beta_n) \}_{n=1}^\infty \) власних функцій ГДО \(M_{v,\alpha}^{(\mu)} \) узагальнено ортогональна, повна й замкнена.

Теорема 3. Будь-яка функція \(g(r) \in G \) зображається абсолютно й рівномірно збіжним на множині \(I_2 \) рядом Фур’є за системою

\[
g(r) = \sum_{n=1}^\infty \left(\int_0^R g(\rho) V_{v,\alpha}^{(\mu)}(\rho, \beta_n) \sigma(\rho) \, d\rho \right) \frac{V_{v,\alpha}^{(\mu)}(r, \beta_n)}{||V_{v,\alpha}^{(\mu)}(r, \beta_n)||_1^2} . \quad (26)
\]

Якщо перейти до ортонормованої системи власних вектор-функцій

\[
\{ v_{v,\alpha}^{(\mu)}(r, \beta_n) \}_{n=1}^\infty = \left\{ V_{v,\alpha}^{(\mu)}(r, \beta_n) \left(||V_{v,\alpha}^{(\mu)}(r, \beta_n)||_1^2 \right)^{-1} \right\}_{n=1}^\infty ,
\]

то ряд Фур’є (26) набуде простішого вигляду:

\[
g(r) = \sum_{n=1}^\infty \int_0^R g(\rho) v_{v,\alpha}^{(\mu)}(\rho, \beta_n) \sigma(\rho) \, d\rho v_{v,\alpha}^{(\mu)}(r, \beta_n) . \quad (27)
\]

При цьому запис формул (24), (25) також стає простішим:
Застосування формул (28), (29) до розв’язання відповідних крайових задач базується на основній тотожності інтегрального перетворення ІДО $M^{(\mu)}_{v,(\alpha)}$.

Визначимо величини та функції:

$$d_1 = \frac{a_1^2 \sigma_1 R_1^{2\alpha + 1}}{c_{11,1}}; \quad d_2 = \frac{a_2^2 \sigma_2 \text{sh} R_2}{c_{11,2}};$$

$$\tilde{g}_{1n} = \int_0^{R_1} g_1(r) v^{(\mu)}_{v,(\alpha);1}(r, \beta_n) \sigma_1 r^{2\alpha + 1} dr;$$

$$\tilde{g}_{2n} = \int_{R_2}^{R_1} g_2(r) v^{(\mu)}_{v,(\alpha);1}(r, \beta_n) \sigma_2 \text{sh} r dr;$$

$$\tilde{g}_{3n} = \int_{R_2}^{R_1} g_3(r) v^{(\mu)}_{v,(\alpha);3}(r, \beta_n) \sigma_3 r^{2\alpha - 1} dr;$$

$$Z^{(\mu),k}_{v,(\alpha);2} (\beta_n) = \left(\tilde{\alpha}_{i2} \frac{d}{dr} + \tilde{\beta}_{i2} \right) v^{(\mu)}_{v,(\alpha);k+1} (r, \beta_n) \bigg|_{r = R_k}; \quad i, k = 1, 2.$$
Доведення. Згідно формулі (28) маємо:

\[
H^{(\mu)}_{v,(\alpha)n} \left[M^{(\mu)}_{v,(\alpha)} [g(r)] \right] = \int_{0}^{R} M^{(\mu)}_{v,(\alpha)} [g(r)] \cdot v^{(\mu)}_{v,(\alpha);3} (r, \beta_n) \sigma(r) \, dr \equiv \\
\equiv \int_{0}^{R} a_1^2 B_{v,\alpha_1} [g_1(r)] v^{(\mu)}_{v,(\alpha);1} (r, \beta_n) \sigma_1 r^{2\alpha_1+1} \, dr + \int_{R_i}^{R_i} a_2^2 \Lambda^{(\mu)}_{v,(\alpha)]} [g_2(r)] \times (34) \\
\times v^{(\mu)}_{v,(\alpha);2} (r, \beta_n) \sigma_2 \sin r \, dr + \int_{R_i}^{R_i} a_3^2 B^{*}_{v,\alpha_2} [g_3(r)] v^{(\mu)}_{v,(\alpha);3} (r, \beta_n) \sigma_3 r^{2\alpha_2-1} \, dr .
\]

Проінтегруємо рівності (34) під знаками інтегралів два рази частинами:

\[
H^{(\mu)}_{v,(\alpha)n} \left[M^{(\mu)}_{v,(\alpha)} [g(r)] \right] = \\
= \left[a_1^2 \sigma_1 r^{2\alpha_1+1} \left(g_1'(r) v^{(\mu)}_{v,(\alpha);1} (r, \beta_n) - g_1(r) v^{(\mu)}_{v,(\alpha);1} (r, \beta_n) \right) \right]_{0}^{R} + \\
+ \int_{0}^{R} g_1(r) \left(a_1^2 B_{v,\alpha_1} [v^{(\mu)}_{v,(\alpha);1} (r, \beta_n)] \right) \sigma_1 r^{2\alpha_1+1} \, dr + (35) \\
+ \left[a_2^2 \sigma_2 \sin r \left(g_2'(r) v^{(\mu)}_{v,(\alpha);2} (r, \beta_n) - g_2(r) v^{(\mu)}_{v,(\alpha);2} (r, \beta_n) \right) \right]_{R_i}^{R} + \\
+ \int_{R_i}^{R} g_2(r) \left(a_2^2 \Lambda^{(\mu)}_{v,(\alpha);2} (r, \beta_n) \right) \sigma_2 \sin r \, dr + \\
+ \left[a_3^2 \sigma_3 r^{2\alpha_2+1} \left(g_3'(r) v^{(\mu)}_{v,(\alpha);3} (r, \beta_n) - g_3(r) v^{(\mu)}_{v,(\alpha);3} (r, \beta_n) \right) \right]_{R_i}^{R} + \\
+ \int_{R_i}^{R} g_3(r) \left(a_3^2 B^{*}_{v,\alpha_2} [v^{(\mu)}_{v,(\alpha);3} (r, \beta_n)] \right) \sigma_3 r^{2\alpha_3-1} \, dr .
\]

В силу умови обмеження (30) позаінтегральний член в точці \(r = 0 \) рівний нулю.

При \(\tilde{\alpha}_{22}^3 \neq 0 \) маємо:

\[
\left[g_1'(R_3) v^{(\mu)}_{v,(\alpha);3} (R_3, \beta_n) - g_3(R_3) v^{(\mu)}_{v,(\alpha);3} (R_3, \beta_n) \right] R_i^{2\alpha_3+1} = \\
= (\tilde{\alpha}_{22}^3)^{-1} R_i^{2\alpha_3+1} \left[(\tilde{\alpha}_{22}^3 g_1'(R_3) + \tilde{\beta}_{22}^3 g_3(R_3)) v^{(\mu)}_{v,(\alpha);3} (R_3, \beta_n) - \\
- g_3(R_3) \left(\tilde{\alpha}_{22}^3 v^{(\mu)}_{v,(\alpha);3} (R_3, \beta_n) + \tilde{\beta}_{22}^3 v^{(\mu)}_{v,(\alpha);3} (R_3, \beta_n) \right) \right] = (36)
\]

138
=(\alpha_{22}^3)^{-1}R_3^{2\alpha_3+1}v_{v,(\alpha);3}(R,\beta_n)g_R - g_3(R_3)(\alpha_{22}^3)^{-1}R_3^{2\alpha_3+1} \cdot 0 = \\
=(\alpha_{22}^3)^{-1}R_3^{2\alpha_3+1}v_{v,(\alpha);3}(R,\beta_n)g_R ; \quad a_3^2\sigma_3 = 1.

Для випадку, коли умови спряження неоднорідні, базова тотожність (4) має структуру:

$$u_k'(R_k)v_k(R_k) - u_k(R_k)v_k'(R_k) =$$

$$= \frac{c_{21,k}}{c_{11,k}}\left[u_k'(R_k)v_{k+1}(R_k) - u_k(R_k)v_{k+1}'(R_k)\right] + \left(a_2\sigma_2 - a_2^2 \sigma_2 \sh R_1 \left(g_1'(R_1)v_{v,(\alpha);1}(R_1,\beta_n) - g_1(R_1)v_{v,(\alpha);1}'(R_1,\beta_n)\right) - \right.$$

$$-a_2^2 \sigma_2 \sh R_1 \left(g_2'(R_1)v_{v,(\alpha);2}(R_1,\beta_n) - g_2(R_1)v_{v,(\alpha);2}'(R_1,\beta_n)\right) =$$

$$= \left(a_2^2\sigma_2 R_1^{2\alpha_2+1} \frac{c_{21,1}}{c_{11,1}} - a_2^2 \sigma_2 \sh R_1 \right) \times$$

$$\times \left[g_2'(R_1)v_{v,(\alpha);2}(R_1,\beta_n) - g_2(R_1)v_{v,(\alpha);2}'(R_1,\beta_n)\right] +$$

$$+a_1^2 \sigma_1 R_1 c_{11,1}^{-1}\left[Z_{v,(\alpha);12}(\beta_n) \omega_{21} - Z_{v,(\alpha);22}(\beta_n) \omega_{11}\right] =$$

$$= d_1 \left[Z_{v,(\alpha);12}(\beta_n) \omega_{21} - Z_{v,(\alpha);22}(\beta_n) \omega_{11}\right],$$

тому, що в силу вибору σ_1, σ_2 вираз

$$a_1^2 \sigma_1 R_1^{2\alpha_1+1} \frac{c_{21,1}}{c_{11,1}} - a_2^2 \sigma_2 \sh R_1 = \frac{c_{11,1}c_{11,2}}{c_{21,1}c_{21,2}} \sh R_1 R_1^{2\alpha_1+1} \frac{c_{21,1}}{c_{11,1}} -$$

$$-\frac{c_{11,2}}{c_{21,2}} \sh R_1 R_2^{2\alpha_2+1} = \frac{c_{11,2}}{c_{21,2}} \sh R_1 R_2^{2\alpha_2+1} (1 - 1) \equiv 0 ;$$

$$2) a_2^2 \sigma_2 \sh R_2 \left[g_2'(R_2)v_{v,(\alpha);2}(R_2,\beta_n) - g_2(R_2)v_{v,(\alpha);2}'(R_2,\beta_n)\right] -$$

$$-a_3^2 \sigma_3 R_2^{2\alpha_3+1} \left[g_3'(R_2)v_{v,(\alpha);3}(R_2,\beta_n) - g_3(R_2)v_{v,(\alpha);3}'(R_2,\beta_n)\right] =$$

$$= \left(a_2^2 \sigma_2 \sh R_2 \frac{c_{21,2}}{c_{11,2}} - a_3^2 \sigma_3 R_2^{2\alpha_3+1}\right) \times$$
Математичне та комп’ютерне моделювання

\[g_3'(R_2) v_{v,(\mu);3}^0 (R_2, \beta_n) - g_3(R_2) v_{v,(\mu);3}^0 (R_2, \beta_n) \]
\[+ a^2_2 \sigma_2 \mathrm{sh} R_2 c_{1,2}^{-1} \left[Z_{v,(\alpha);12}^0 (\beta_n) \omega_{22} - Z_{v,(\alpha);22}^0 (\beta_n) \omega_{12} \right] = d_2 \left[Z_{v,(\alpha);12}^0 (\beta_n) \omega_{12} - Z_{v,(\alpha);22}^0 (\beta_n) \omega_{12} \right], \]

tому що в силу вибору \(\sigma_2 \) та \(\sigma_3 \) вираз
\[a^2_2 \sigma_2 \mathrm{sh} R_2 \frac{c_{2,1,2}}{c_{1,2}} - a^2_3 \sigma_3 R_2^{2 \alpha + 1} = 0 \]

Внаслідок диференціальних тотожностей
\[\left[a^2_1 B_{v,\alpha_1} + (\beta_n^2 + k_1^2) \right] v_{v,(\alpha);1}^0 (r, \beta_n) \equiv 0; \]
\[\left[a^2_2 \Lambda_{(\mu)} + (\beta_n^2 + k_2^2) \right] v_{v,(\alpha);2}^0 (r, \beta_n) \equiv 0; \]
\[\left[a^2_3 B_{\alpha_2}^* + (\beta_n^2 + k_3^2) \right] v_{v,(\alpha);3}^0 (r, \beta_n) \equiv 0 \]
отримаємо рівності:
\[a^2_1 B_{v,\alpha_1} \left[v_{v,(\alpha);1}^0 (r, \beta_n) \right] = - (\beta_n^2 + k_1^2) v_{v,(\alpha);1}^0 (r, \beta_n), \]
\[a^2_2 \Lambda_{(\mu)} \left[v_{v,(\alpha);2}^0 (r, \beta_n) \right] = - (\beta_n^2 + k_2^2) v_{v,(\alpha);2}^0 (r, \beta_n), \]
\[a^2_3 B_{\alpha_2}^* \left[v_{v,(\alpha);3}^0 (r, \beta_n) \right] = - (\beta_n^2 + k_3^2) v_{v,(\alpha);3}^0 (r, \beta_n). \]

Підставивши одержані залежності в рівність (35), матимемо:
\[H_{v,(\alpha);n}^0 \left[M_{v,(\alpha)}^0 [g(r)] \right] = \sum_{k=1}^d \left[Z_{v,(\alpha);12}^k (\beta_n) \omega_{2k} - Z_{v,(\alpha);22}^k (\beta_n) \omega_{1k} \right] + \]
\[+ (\alpha_{22}^2)^{-1} v_{v,(\alpha);3}^0 (R_3, \beta_n) R_3^{2 \alpha + 1} g_k - (\beta_n^2 + k_2^2) \times \]
\[\int_0^R g_1 (r) v_{v,(\alpha);1}^0 (r, \beta_n) \sigma_1 r^{2 \alpha + 1} dr - (\beta_n^2 + k_2^2) \tilde{g}_{2n} - (\beta_n^2 + k_3^2) \tilde{g}_{3n}, \]

Якщо роз’єднати суму \((\beta_n^2 + k_2^2) \) на два доданки й врахувати, що
\[\sum_{j=1}^3 \tilde{g}_{jn} \equiv \tilde{g}_n, \text{ то отримаємо (33).} \]

Теорему доведено.

Отримані формули (28), (29) та (33) складають математичний апарат для одержання інтегрального зображення точних аналітичних розв’язків алгоритмічного характеру достатньо широкого класу краївових задач неоднорідних середовищ з м’якими межами.
Параболічна крайова задача математично приводить до інтегрування в області $D_3 = \{(t, r) : t \in (0, \infty); r \in I_2 \}$ диференціальних рівнянь

$$\frac{\partial u_1}{\partial t} + \gamma_1^2 u_1 - a_1^2 B_{v,\alpha_i}[u_1] = f_1(t, r)\ , \ r \in (0, R_1)\ ,$$

$$\frac{\partial u_2}{\partial t} + \gamma_2^2 u_2 - a_2^2 \Lambda(\mu)[u_2] = f_2(t, r)\ , \ r \in (R_1, R_2)\ ,$$

$$\frac{\partial u_3}{\partial t} + \gamma_3^2 u_3 - a_3^2 B_{\alpha_i}^*[u_3] = f_3(t, r)\ , \ r \in (R_2, R_3)\ (39)$$

з нульовими початковими умовами, крайовими умовами

$$\lim_{r \to 0} [r^\nu u_1(t, r)] = 0;$$

$$\left. \begin{bmatrix} \alpha^3_{22} + \frac{\partial^2}{\partial t^2} \gamma_{22} \right) \frac{\partial}{\partial r} + \beta^3_{22} + \gamma_{22}^2 \frac{\partial}{\partial t} \right] u_3(t, r) \bigg|_{r=R_3} = g_R(t) (40)$$

та умовами спряження $(j, k = 1, 2)$

$$\left. \begin{bmatrix} \alpha_{j1}^k + \frac{\partial}{\partial t} \gamma_{j1}^k \right) \frac{\partial}{\partial r} + \beta_{j1}^k + \gamma_{j1}^k \frac{\partial}{\partial t} \right] u_k(t, r) -$$

$$- \left. \begin{bmatrix} \alpha_{j2}^k + \frac{\partial}{\partial t} \gamma_{j2}^k \right) \frac{\partial}{\partial r} + \beta_{j2}^k + \gamma_{j2}^k \frac{\partial}{\partial t} \right] u_{k+1}(t, r) \bigg|_{r=R_k} = \omega_{jk}(t). \ (41)$$

Запишемо систему (39) й нульові початкові умови в матричній формі:

$$\left[\begin{bmatrix} \frac{\partial}{\partial t} + \gamma_1^2 - a_1^2 B_{v,\alpha_i} \right] u_1(t, r) \right] = \begin{bmatrix} f_1(t, r) \\ f_2(t, r) \\ f_3(t, r) \end{bmatrix} ; \begin{bmatrix} u_1(t, r) \\ u_2(t, r) \\ u_3(t, r) \end{bmatrix} \bigg|_{t=0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}. \ (42)$$

Інтегральний оператор $H_{v, (\alpha); n}^{(\mu)}$ за формулою (28) зображимо у вигляді операторної матриці-рядка:

$$H_{v, (\alpha); n}^{(\mu)}[\ldots] = \int_{0}^{R_1} \ldots \int_{R_1} \ldots \int_{R_2} \ldots \int_{R_2} \int_{R_3} \ldots \int_{R_3} \int_{R_4} \ldots \int_{R_4} \int_{R_5} \ldots \int_{R_5} \sigma_1 r^{2\alpha_1-1} dr$$

$$\cdot \sigma_2 \sinh r dr \cdot \sigma_3 r^{2\alpha_2-1} dr. \ (43)$$
Застосуємо операторну матрицю-рядок (43) за правилом множення матриць до задачі (42). Внаслідок основної тотожності (33) маємо задачу Коші [9]:

$$\frac{d \tilde{u}_n(t)}{dt} + (\beta_n^2 + \gamma^2) \tilde{u}_n(t) = \tilde{F}_n(t),$$

$$\tilde{u}_n(t)_{|t=0} = 0; \quad \gamma^2 = \max \{\gamma_1^2; \gamma_2^2; \gamma_3^2\}.$$

Тут функція

$$\tilde{F}_n = \tilde{f}_n(t) + \sum_{k=1}^{2} d_k \left[Z_{v,\alpha,12}^{(\mu),k}(\beta_n) \omega_{2k}(t) - Z_{v,\alpha,22}^{(\mu),k}(\beta_n) \omega_{\alpha k}(t) \right] +$$

$$+ (\alpha_{22}^3)^{-1} v_{v,\alpha,3}^{(\mu)}(R_3, \beta_n) R_3^{2\alpha_1+1} g_R(t).$$

Розв'язком задачі Коші (44) є функція

$$\tilde{u}_n(t) = \int_{0}^{t} e^{-\left(\beta_n^2 + \gamma^2\right)(t-\tau)} \tilde{F}_n(\tau) d\tau.$$

Оператор $H_{v,\alpha,\mu}^{-(\mu)}$ згідно формули (29) як обернений до (43) зображимо у вигляді операторної матриці-стовпця:

$$H_{v,\alpha,\mu}^{-(\mu)}[\ldots] = \begin{bmatrix} \sum_{n=1}^{\infty} \ldots v_{v,\alpha,1}^{(\mu)}(r, \beta_n) \\ \ldots \\ \sum_{n=1}^{\infty} \ldots v_{v,\alpha,2}^{(\mu)}(r, \beta_n) \\ \ldots \\ \sum_{n=1}^{\infty} \ldots v_{v,\alpha,3}^{(\mu)}(r, \beta_n) \end{bmatrix}.$$ \hspace{1cm} (46)

Застосуємо операторну матрицю-стовпець (46) за правилом множення матриць до матриці — елемента $[\tilde{u}_n(t)]$, де функція $\tilde{u}_n(t)$ визначена за формулою (45). У результаті елементарних перетворень маємо єдиний розв'язок задачі (39)–(41):

$$u_j(t, r) = \sum_{n=1}^{\infty} \tilde{u}_n(t) v_{v,\alpha,\mu,1}(r, \beta_n) = \int_{0}^{R} \int_{0}^{R} H_{v,\alpha,\mu,1}^{(\mu)}(t-\tau, r, \rho, f_1(\tau, \rho)) \times$$

$$\times \sigma_1 \rho^{2\alpha_1+1} d\rho d\tau + \int_{0}^{R} \int_{0}^{R} H_{v,\alpha,\mu,2}^{(\mu)}(t-\tau, r, \rho, f_2(\tau, \rho)) \sigma_2 \text{sh} \rho d\rho d\tau +$$

$$+ \int_{0}^{R} \int_{0}^{R} H_{v,\alpha,\mu,3}^{(\mu)}(t-\tau, r, \rho) f_3(\tau, \rho) \sigma_3 \rho^{2\alpha_2-1} d\rho d\tau +$$

$$+ \int_{0}^{t} W_{v,\alpha,3}^{(\mu)}(t-\tau, r) g_R(\tau) d\tau + \sum_{k=1}^{2} d_k \int_{0}^{t} R_{v,\alpha,12}^{(\mu),j,k}(t-\tau, r) \omega_{2k}(\tau) -$$

142
1) породжені неоднорідністю системи функції впливу

\[
H^{(\mu)}_{v(\alpha);j3}(t, r, \rho) = \sum_{n=1}^{\infty} e^{-(\beta^2 + \gamma^2) t} v^{(\mu)}_{v(\alpha);j}(r, \beta_n) v^{(\mu)}_{v(\alpha);k}(\rho, \beta_n) j, k = 1, 3; (48)
\]

2) породжені крайовою умовою в точці \(r = R_3 \) функції Гріна

\[
W^{(\mu)}_{v(\alpha);j3}(t, r) = (\tilde{a}_{22}^3)^{-1} R_3^{2\alpha_z + 1} \sum_{n=1}^{\infty} e^{-(\beta^2 + \gamma^2) t} \times
v^{(\mu)}_{v(\alpha);j}(R_3, \beta_n) v^{(\mu)}_{v(\alpha);j}(r, \beta_n); j = 1, 3; (49)
\]

3) породжені неоднорідністю умов спряження функції Гріна

\[
R^{(\mu), j,k}_{v(\alpha);12}(t, r) = \sum_{n=1}^{\infty} e^{-(\beta^2 + \gamma^2) t} \times
Z^{(\mu), k}_{v(\alpha);j2}(\beta_n) v^{(\mu)}_{v(\alpha);j}(r, \beta_n) ; i, k = 1, 2; j = 1, 3. (50)
\]

Функція

\[
u(t, r) = \theta(r) \theta(R_1 - r) u_1(t, r) + \theta(r - R_1) \theta(R_2 - r) \times
u_2(t, r) + \theta(r - R_2) \theta(R_3 - r) u_3(t, r)
\]

повністю характеризує процес в даному середовищі.

Зауваження 2. Якщо \(\gamma^2 = \gamma_1^2 > 0 \), то \(k_1^2 = 0 \), \(k_2^2 = \gamma_1^2 - \gamma_2^2 \geq 0 \), \(k_3^2 = \gamma_1^2 - \gamma_3^2 \geq 0 \); якщо \(\gamma^2 = \gamma_2^2 > 0 \), то \(k_1^2 = \gamma_2^2 - \gamma_1^2 \geq 0 \), \(k_2^2 = 0 \); \(k_3^2 = \gamma_2^2 - \gamma_3^2 \geq 0 \); якщо \(\gamma^2 = \gamma_3^2 > 0 \), то \(k_1^2 = \gamma_3^2 - \gamma_1^2 \geq 0 \), \(k_2^2 = \gamma_3^2 - \gamma_2^2 \geq 0 \), \(k_3^2 = 0 \).

Зауваження 3. Інтегральне зображення (47) аналітичного розв’язку параболічної задачі (39)–(41) носить алгоритмічний характер. Параметри допускають реалізацію будь-якого часткового випадку безпосереднім вибором із загальних структур (у рамках розглянутого моделі).

Зауваження 4. Якщо початкові умови ненульові \((u j) |_{t=0} = g_j(r) \), то в рівняннях (47) будуть брати участь ще доданки

\[
\sum_{k=1}^{2} d_{k} \left[R^{(\mu), j,k}_{v(\alpha);12}(t, r) \psi_{2k} - R^{(\mu), j,k}_{v(\alpha);22}(t, r) \psi_{1k} \right] + W^{(\mu)}_{v(\alpha);j3}(t, r) \psi_{3k}
\]

\[
\psi_{jk} = \left[\delta^{k}_{j1} g^{(R_k)}_{k} + \gamma^{k}_{j1} g^{(R_k)}_{k} \right] \left[-\delta^{k}_{j2} g^{(R_k)}_{k+1} + \gamma^{k}_{j2} g^{(R_k)}_{k+1} \right],
\]

\[
\psi_{33} = \delta^{3}_{22} g^{3}_{3} + \gamma^{3}_{22} g^{3}_{3}; j, k = 1, 2. (51)
\]

Поява доданків (51) відображає вплив початкових умов на м’якість середовища по відношенню до відбиття теплових хвиль.
Якщо $\delta^k_{im} = 0, \gamma^k_{im} = 0$, то ми одержуємо випадок жорсткої межі кусково-однорідного середовища D_2.

Висновки. Методом скінченного гібридного інтегрального перетворення типу Бесселя–Лежандра–Ейлера зі спектральним параметром одержано інтегральне зображення єдиного точного аналітичного розв'язку мішаної задачі для рівнянь параболічного типу на трискладовому сегменті полярної осі з м'якими межами. Побудований розв'язок неперервно залежати від параметрів та даних задачі й може використовуватись як в теоретичних дослідженнях, так і при комп'ютерному моделюванні еволюційних процесів у кусково-однорідних середовищах.

Список використаних джерел:

Using the method of hybrid integral transformation of Bessel-Legendre-Euler with spectral parameter, it is obtained the integral representation of the exact analytical solution of mixed problem for parabolic equations of heat conduction type on ternary segment of polar axis with soft limits.

Key words: parabolic equation, hybrid differential operator, Cauchy's functions and Green's functions of the boundary value problem, hybrid integral conversion with spectral parameter, the primary identity, main solutions.

Отримано: 25.05.2017