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bounded and self-adjoint in the space of all k-periodic sequences. Then a spe-
cial functional was constructed, the critical points of which in this space are so-
lutions of the original equation. A Gateaux derivative of this functional is
found. Next we consider the Nehari manifold for a given variational problem,
which is a set of nontrivial critical points of a constructed functional in the
space of k-periodic sequences. It is shown that this manifold is a non-empty
and closed subset of a given space. In addition, the corresponding minimization
problem is considered and it is shown that this problem has a solution in the
Nehari manifold. Consequently, under these conditions the original equation
has nontrivial periodic solutions. Finally, due to the fact that saturable nonline-
arity satisfies these conditions, the existence of two nontrivial standing waves
with k-periodic amplitude for a discrete nonlinear Schrodinger equation with
saturable nonlinearity on a two-dimensional lattice is established. The results of
this paper are the distribution of already known results for discrete nonlinear
Schrodinger equations on 1D and 2D-lattices.
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NUMERICAL COMPLEX ANALYSIS METHOD FOR
PARAMETERS IDENTIFICATION OF ANISOTROPIC MEDIA
USING APPLIED QUASIPOTENTIAL TOMOGRAPHIC DATA.

PART 1: PROBLEM STATEMENT AND ITS APPROXIMATION

The approach to the solving of gradient problems of parameters
identification of quasiideal fields with using applied quasipotential
tomographic data based on numerical complex analysis methods is
transferred to cases of anisotropic media. We, similar to the existing
works of world scientists, some additional information about the na-
ture of the distribution of conductivity inside the domain (research
object) is considered a priori known. However, in opposite to the tra-
ditional approaches to the statement and solving the problems of
electrical impedance tomography, we set the local velocities distribu-
tion of a substance (liquid, current) in addition to the averaged poten-
tial at the contact sections of plate and body and at other sections
(stream lines), we set the potential distribution (according to experi-
mental data, which we approximate using splines, Bezier curves,
etc.). Generation of initial data at the boundary of the investigated
object is carried out in accordance with the polar model of current in-
jection and a given sum of eigenvalues of the conductivity tensor of
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the medium. The presence of this kind of data greatly accelerates the
process of further solving the problem, which is convenient, in par-
ticular, when verifying the method that developed by authors. The
corresponding problem is reduced to the iterative solving of a series
of problems for the Laplace type equations, where instead of
«boundary numerical analogues of the Cauchy-Riemann type equa-
tions» appear the ratio of quasiorthogonality with using special types
of optimization conditions. In particular: the minimizing functional is
constructed by taking into account the Cauchy-Riemann type condi-
tions, the relation between eigenvalues of corresponding anisotropy
tensor and also regularizing term; the condition-restriction is built
based on ellipticity conditions.

Key words: applied quasipotential tomography, quasiconformal
mappings, anisotropy, identification, nonlinear problems.

Introduction. As it is known [1-5], the image reconstruction of an iso-
tropic conductivity coefficient that based on the applied quasipotential tomog-
raphy (AQT) requires the imposition of a large number of conditions at the
domain bound, and also the structure of the corresponding medium. It turns
out that in the general case (in contrast to some specific [6]) of anisotropy, it is
necessary to set much more information about the conductivity distribution for
its parameter identification [1, 7—12]. This, obviously, weakens the correctness
of the problem in comparison with the isotropy. And, consequently, it requires
(in comparison with, for example, [5]) the necessity of using a regularizing
functional, in particular the Tikhonov type [1, 3, 4, 9, 11]. The ways to apply
additional data about the conductivity tensor (CT), depending on the infor-
mation type about it are proposed in a number of papers [6-9, 12]. In particu-
lar, several options for specifying information about eigenvectors offer in [8].
The regularization procedure was adapted in such a way that the additional
data were taken into account as much as possible [9]. A new visual CT repre-
sentation, in which it is easy to understand its distribution, is given in [6].

On the other hand, today a promising methodology for identifying the
conductivity coefficient using AQT data, according to which the solving of the
sequence of so-called analysis and synthesis problems is reduced to the alter-
nate application of numerical quasiconformal mappings methods and the pa-
rameters identification of the conductivity of the medium, respectively [4, 5] is
developed. In this paper we discuss the transfer of this methodology to the
case of the parameter identification of anisotropic media. At the same time, the
additional information is the dependency between eigenvalues of CT.

In this case, the practical application of the results of this research can
take place in a number of branches of science and technology (see, for exam-
ple [1, 9-13]). In particular, in medicine, the object of this kind of research
may be the medium with fibrous or layered areas (which includes muscles,
bones, etc.), in which there is a stream of non-spherical particles (for example,
red blood cells), and in geology, with areas of soil layer compression.
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Parameters identification problem of anisotropic mediums using
AQT data. Consider quasiideal processes of particles movement (in particu-
lar, fluids, electrical currents) in a single-connected curvilinear domain (hori-
zontal anisotropic formation, anisotropic plate — the tomographical cross-

section) G, (Fig. 1, a), bounded by a smooth closed curve 0G, = {(x, y):
x=Xx(r), y=y(), X0)=x27)=X, ¥(0)=y27)=y,, 0<7<2x,
where Xx(7), y(r) are defined continuosly differentiated functions,
O(%,,¥,) is given an initial starting point}, generated by the existence of
potential differences o{”, @ P (¢ ? > ")), which are given on select-
ed equipotential lines 4,B, and C,D,, where 4,, B,
marked points on the 0G,; p=1,2,... is injection number (see for example

Cp, Dp are

[3-5, 8, 11]); B,C, and 4,D, are impermeable boundary flow lines. We

model a current injection through tomographic cross-section, similarly to [4,
5], by using sets of values {z”, 7", 7" 7"} corresponding to which

4, = (3P, 56). B, = (3. 5@,
C, = (¥, 5@), D, = (3. 7).
We denote the corresponding for current injection bound of domain G,

with given four marked points by 0G'? (2P = x'P) +iy(P)),

hrss
B c,
£
G
4, D,
@
e o"?
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Fig. 1. Tomographical cross-section G, (a)

and corresponding complex quasipotential domains G((op ) (b)

As a mathematical model of AQT [1] we use, similarly to [4, 5, 14],
systems of differential equations in partial derivatives which connect mu-

tually quasicomplex conjugate quasipotentials ¢ =@'”(x,y) of density
ogradg'?(x,y) and stream functions y?) =P (x, ) when have place
16
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CT o= (aaﬁ (x, y,...))a i identification under corresponding boundary

conditions:
(011017 + 01,0, ") + (0,07 + 020/, = (1)
¢(p)‘Apo :ﬂl’ip), ¢7(p)‘cp *(p) ‘J(p)HB C,UA,D, =0; (2)
PO e =700, PP D), 5 =0 (M),
7P| 45, = 0 00, [FPO) | p, =¥ P00 ()
Oy +0y =4 +4 =4 4)

Here (1) is a consequence of the linear law of motion such as Ohm, Darcy

Z(p) (p)

etc. j\¥’' =ogradp'”’ and the equation of continuity div j(” ) =0 [1-8,

10, 13]; 0,43 =0,4(x,,...) are limited continuously differentiated in do-

main Gﬁ” ) functions, which characterize conductivity and anisotropy of
medium; A =A(x,y) is given distribution of the sum of eigenvalues 4,
A, of corresponding to (1) matrix, that equivalent to the sum of diagonal

elements of given tensor [14]; 7 is unit vector of outer normal; M is a
running point of the corresponding curve. The functions

(ﬁ(p)(M) — (ﬁ(p)(T,...) (T(Cp) <r< Tép)), g(17)(]‘/[) — q_o(p)(r,...)
@ <e<a?), PP M)=¥P(,.) @) <c<P),
YPOMy=¥" P (,.) (¥ <r< r(c”))
can be built by the interpolation of the experimentally received their values

(Biﬁ?, ga(ff), ‘P(”)p), ‘P*,(.(’p’)) having some r—rip) z'—r((’,’,), r=1r)

(p) >
*.Iiﬂ)

T=1 ('f,) on sections BpCp, Apr, 4,B,, C,D,, respectively

(¢(p) < ¢(p) < @ (/,(p) < ¢,(ﬁ) < ¢ )’ \{;(p) >0,

¥ 50, 0<TP <P 41, 0<iP <mlP) 41,
J

*(p)
0< P <n? +1, 0< 7P <0 P 1)
as in [5]. We search the CT components as:
sk
a’a k .
oy = 011(x(p)’y(p)’as“,or“vao,s“ )= z ak“_r”,r“x(ﬂ) iy
k,,r,=0

a’'a

(p)r,

Sh b
k b
Oy = Gzz(x(P),y(P)’bSh’ bog )= z bk X Pk =1, y(P);
k,,r,=0
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_ (p)k.—r. (P,
512—012(3C I Cs 005 Co ) = Z Cr—r. X Yoo

k.,r.=0
021 = 0125 ®)
where ay .., b _.,.. c_., (=05, 1,=0,.k,
ky=0,..,8,, n,=0,...k, k. =0,.,s., r.=0,..,k,) are the parameters

that are being found during the problem solving.
The problem lies in image reconstructing of CT. In this, the accompany-
ing is calculating of corresponding electrodynamic meshes and velocity fields.
We can reduce (1)5) to the series of more general boundary value prob-

lems on quasiconformal mapping @ = "”)(z) = P (x, y) +iy'? (x,y) of the
physical domains Gg” ) (Fig. 1, a) onto the corresponding domains of the com-
plex quasipotential G'#) (Fig. 1,b) by the way, similarly to [4, 5, 14], of intro-
ducing the stream functions w'?) = ") (x,y) (p =1, p), which are complex

(p)

conjugated to @'’ = go(P '(x,y) (p= G), under (4) and (5) conditions:

{01017 + 010" =y, 000l +one” =y (6)
(ﬂ“’)‘A,B,, =g, 9P |cp =9’

(p>‘ -0 (p>‘ _ ). ;

v A4,D, 2 BC, o (7

j ‘j(p)‘dl=Q(p),MeBpCp,NeA D,
MN

(D(P) (M)‘ch,, — 5P (M), w(p)(M)‘Apr — Q(P) (M),

M) 5 =W, YD OD|p =w P, )
where

W’EP)(M) — I ‘”ng)(M)dl, l//*(p)(M) _ j \P*(P) (M)dl;
AM DM
G ={(@.w):el? <p< ™ 0<y <0P};
Q(p ) is discharge of the vector fields (current) through the contact sec-
tions (4,8, and C,D,); dl is arc element of corresponding curve.
The synthesis of the numerical quasiconformal mapping method
and an idea of the rotational block parameterization. The most common

approach for solving of the AQT forward problem is based on the using the
finite element method. But the continuity conditions and, thus, the conserva-
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tion law for both a mesh cell and a whole domain doesn't satisfy [15]. So, we
apply the finite difference method for discretization of functions and parame-
ters of AQT mathematical model where the analogies of electrodynamic prin-
ciple are considered. Also we apply quit modified algorithm for numerical
solving of the boundary value problems on quasiconformal mapping of the
domains with the different geometric configuration, which are limited by the
stream and equiquasipotential lines [14] (including the advantages of the ap-
propriate method) for the searching the unknown function of the current’s

potential @'”)(x,y). We search the functions ¢”) =@ (x,y) and

!//(l’) = y/(’”) (x,y) when value (c)'aﬁ (x, y,...))aﬁ:L2 is known, by the way of
solving of the boundary value problems, inversed to (4)<8), on quasiconfor-

P

mal mapping G -G (relative to =x""(p,y) and

P = (P (1)) with statements which have the form [4, 5, 14]:

TORY (p) "(p)
00y —OH O 071X, X %12y
11~22 21¥12 x;/(p)_ 2179 + L + :0,
oy oy O11 o1
v 4 )

Y "(p) "(p)
{‘711522 — 021012 y!(p) + O12Yp J +[y,/, 021 Yy ] _o:
4 )
»

o)) 022 022 o))

@) =27 ). Y@ ) =3P W),
P (0, 0P)) = x( (m(@) 1P (,0P)) = y( “’)(co))
XD (P ) = ;C(T*(p) (V,)), PP (D) ) = y(r*(m(w)),
(0,00 =% (@), 7 (0,0)=7(”(9)); (10)

r(p) (») , (p)
(" s )( FO (AP Py P () !//(p)))=
f<p)(¢(p> DN 1Yy Y 127y A o

=0, yf(p)(¢(p) ,//(p)) o, x'(p)(go(p) l/,(p)) re[r(p) z.(p)]
y(;,(p)((/) (p)’l// (p))

OO ( 11y|;/(p)(¢ ®) 4 (p))_alzx;/(p)((o ®) (p))=
X, (@ )

=0, y;,(”)(gﬁ (p) (”))—Gzzx;,(p)((p (p),l/, (”)),z' c [T(Dp)éf(cp)]’
ylw(p) (g(p)’o)(o.“yl;/(p) (z,(p)’o) _ O.lle;/(p)(g(lﬂ)’o)) -
— x{;)(l’) (Q(P)’O)(O.ﬂyv'/(ﬁ) (?(P)’O) _ O-zzx(;/(p)(f(p)’o))’ re [TQP);TE)P)]’
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y(;)(P)(a(P),Q(P))(
X;J(P) (¢—)(P)’Q(P))
— O.Zly;/(P)((/—)(P),Q(P)) _ O.zszV/(P)(a(P)’Q(P))’ re [Tép);z.gp)]

Hyl;/(]?)((p(.ﬁ) Q(P)) o x'(l’)(a(ﬁ) Q(P))) (11)

under (4) and (5) conditions, where 7=z (y), =77 (p),

=P, 1=t (p) (" <p<p?, 0<y <) — functions,

which can be built by the way of interpolation of the experimentally received

—_ * —
their values z'(p ), z’lfp ), ijp ), 77 having some arguments y/(p ) qkl.(p ),

*(p) ;
2 ﬁ on sections 4,B,, Bp C > C D, and 4,D,, respectively.

We reconstruct CT, similarly to [3-5], using the minimizing functional
of the sum of the squares of the residual of expressions, receiver from Cauchy-
Riemann type conditions, (4) condition, within using regularization ideas

- - daf
1 1
CD(x( )s ) x(p) > y( )9"'3 y(p) ’ asn,O’bs,,,O ’ C.v(‘,O 20y aO,sa ’bO,sh > CO,sc ) =

i 2
=Z((011yu/( e N, LN v L

2
(U y _U xr(p) (p)_O.Zlyl//(p)+022xv'/(p)+y(;(p)) + (12)

a3 5 Bere $ 5 B, § 5

F0rDo 1008 =0 = 1000 5,5 100%

2u(A— 0y, —0y,)* — min
and elliptic conditions [14]

01102 — 01 >0, 0y +05, >0, 13)
where g is multiplier, which affects the degree of implementation of
the (4) condition, 7 is regularizing parameter.

Let’s write the difference analogues of problem (4), (5), (9)—(11) in
mesh domains G7 (P) | similarly to [4, 5, 14], in such form:

2 2
z(fl)/ +x(p) 2(1+7(p) B(p))x(p)+7(p) B(p)( (57)1+x(17) )4_},(10)><

() (p) (p) X » _ )
A(F)( Jf;l/Jrl-i_xtpl/ 1 xtflj 1 lpl_[+l)/4+(xllj,+| - 16 ])}/(F D(F)+
(P) (P _\(P) (P) (p) (P2 p(P)y,,(P)
+G P Oty =0 =0, 0=yl + 3l =204+ /7B 7y + (14)

2
+7? B,-(j)(yf’;)l yl(szrl)+(yt(fl)j+l+yt(pl)jl y1(+p1)]1 yz(p1)1+1)7(p)Az'(5)/

M+, P PED 4 ED R R, (i=1m P, j =10,
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xf) =37 W) A =3(#"wp) 10, =577 @),
YO =370 @)), <8, =FH TP w)),
W0 =3 (EPw)) 1B =5 @),
W =5(cP0)) O<ismP 41, 0<j<aP w1 (15)

(3y(p) 4)’1(5) (p))(all(y(()pj)ﬂ J’o,j 1) =01 (x(()p,)+1 _x(()pj) 1)) =

= (33‘((),[}) —4x1(";-) +x£p'))(0'21(y(p-) J’((),;) )= 02 (xo i+l x(()I;) 1)):

0,7+1
(p) (p) ( (p)
G, =4+ oG = -
_0-12 (xr(nl()ﬂ)+1’j+1 _x;71?1+1,.771)) (O-Zl(y (P 41 L+l y(71)1+1,.771) -
_ (p) _+» (p) _ Ay (P (p)
0-22 (xmlp)Jrl,jJrl xm(p)+1,j—1))(3x 2P 11 i 4-x lp) j + xm””fl,j )’
3 (») —4 (p) 3 (P) —4 (p) (p)
) (») oy ( Yio yi, +y1 ) 012 ( X, Xy X )
(yi+10 YiZ10 (p) (») -

Xi+1,0 ~Xit10
(o Gy 43D 55 0 (38 - 4x§f)+xf,§)>)=0,

(0-11(3yl(i<)p>+1 _4y(p<)p> l(it)pj 1) (o} 2(3x 2P +1 _4xi(,z()*’) +
+x(p<)p ))(yt(fl),n‘”“rl _yi(fl),n“”H) _(0-21(3yi£<p>+1 —4yf,Z2p) +

+y lm ) 0.22(3x(p)) 4xi(j<)p)+x(p<)p) ))(x(p)

i,n? +1 i+ 4
) ) =0, =0m P4, =00 41; (16)
AP =of\ " + o, (17)

where 7/('” ) is quasiconformal invariant [ 14] for the corresponding domains
GC};(p) {((0(19) ;p)): (Di(p) — (in) +iA(p(p), i=0,mP) +1;

,/,5_17)

Al//(l’) :Q(p) /(n(”) +1), 7,(/7) =A(p(”)/Al//(p), m(”), e eN};

(p) _ x(p)@(p) p)) y(p) _ y(p)(qo(p)’l/,jp)) 0.7(17) (xz(lj)ayz(,lj))

— jAl//(‘D), jZO,n(p)-i-l; A¢(p) — (w*(p) _(Agp))/(m(p) +1),

A =27 (B vy, AR, BB, P, Df‘j), E®, FP

are defined in the same way as [14].
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We can rewrite the functional (12) and elliptic conditions (13) for all

internal nodal points (xl(zj), y,(’;)) (PIE, i=1,m(”), jzl,n(”)) as
follows
(Y (p) b b —
(Zl,l seenZ (p) n? 7asﬂ’03 S,,,O’CS( ,0,...,610,5“ »0,s, 960,3( )

Bon® pt? O.”(p)(y(p) (p) )~ ol (p)( (P) _ (P )

i,j+1 — )i ,j—1 zj+1 lj 1
pairj=l Ay
y(p) (p) (p) 7(p) (p) (p)
l(f])J_x,(p])] O- (yz J+1 yl] l) U (xl]+1_ )_(18)
(p) AI//
(p) (p) 2
ylflj_ylplj T, zz kb ’;rh
Ap Y k Or 100k 20n=0 100
2 .
z Z /17(/7) 6171(17) 0272(5)) —> min;
k.=0r=0
(p) (p)2 )
glyl(p)azyzp - 2w, 0'171(17) +6272(5 20,
61}'1@) <ay, 62<p) <ay,, (19)

’ ! ’
where a0, bk'*r,!,rh” oy (kg =O,sa, r=0,k., k,=0,s,,

LRAR)
n =0k, k. =0,s,, r/=0,k) are the desired parameters. The solving

of the nonlinear programming problem (18)—(19) is expedient to imple-
ment by one of the appropriate methods of local optimization (for exam-
ple, by the penalty functions method [16]).

Conclusions. The methodology [4, 5] of image reconstruction based
on the idea of the quasiconformal similarity in the small of building the
curvilinear quadrangles — dynamical mesh components in the physical
domain and the corresponding rectangles in the complex quasipotential
domain using AQT data and the rotational parameterization of internal
nodes of dynamic meshes (which are built for each injections) and
searched CT is generalized to the case of anisotropic media. We set the
liquid (current) distribution and the averaged potential at the contact sec-
tions of plate and body unlike the traditional approaches to the statement
and solving the problems of electrical impedance tomography [1-3, 6—13].

We plan to extend the proposed algorithm to the following cases: spatial
resolution, applying the quasipotential of the initial stream to several sections,
parameters identification of CT for piecewise-homogeneous and piecewise-
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inhomogeneous media (which, in particular, have place in medical diagnos-
tics). Moreover, in medical practice there are media where the dependence of
conductivity from the direction is not necessarily determined by the corre-
sponding ellipse. In this case, it is expedient to represent the CT as a complex
function. This is one of the areas for our future researches too.
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YMCNOBU METOA KOMMIIEKCHOIO AHANI3Y
IDEHTU®DIKALIT MAPAMETPIB AHI3OTPOMHUX
CEPEQIOBMLL 3A JAHUMU TOMOTPA®II
NPNKNAOEHUX KBA3INOTEHLUIANIB.
YACTUHA 1: MOCTAHOBKA TA HABJTMXXEHHA 3A0AUI

[Mixxig 1o po3B’si3aHHA TPami€eHTHHX 3aAad iAeHTU(IKaLil mapameTpis
KBa3iilcaJbHUX TIOJIB 32 TaHUMHU ToMorpadii MpHUKIaJeHNX KBa3iNoTeHIia-
JIiB Ha OCHOBI YHCJIOBUX METOAIB KOMIUIEKCHOTO aHaNi3y ePEeHECeHO Ha BU-
HaJIK1 aHI30TPONHUX cepenoBull. [1py 1bOMy, aHAJIOTIYHO [0 iICHYIOUUX PO-
0iT CBITOBHX BUYCHHX, allPiOPHO BIIOMHMH BBaXKAIOTHCA JESKI JOAATKOBI Bi-
JIOMOCTI TIPO XapakTep PO3NOALTY MPOBITHOCTI BcepeauHi obnacti (06’ekra
nocimkeHss). [Ipore, Ha BiAMiHY BiJ TpaAWIIMHUX MiJXOIIB IO MIOCTAHOB-
KU Ta pO3B’s3aHHS 33714 eJIEeKTPOiMIIefaHCHOI ToMorpadii, Ha DUITHKAX KO-
HTaKTY IUIACTHHKH 1 Tij1a OKPIM yCepeJHEHOro NOTEHIialy TyT 331a€ThCs 1
1 pO3MOJiN JIOKATbHUX IMBUAKOCTEH PEYOBHHH (PIAMHH, CTPyMYy), a Ha iH-
[IMX IUBTHKAX (JIHISX Tedil) — po3noAiT MOTeHIiamy (32 eKCIIepUMEHTaITb-
HUMH JAQHHUMH, SIKI alpOKCHMYEMO i3 3aCTOCYBAaHHSIM CIUIAHHIB, KPHBHX
Besbe Torio). ['eHepaltisi BUXiJHAX JaHUX HA MEXIi JOCIIHKYBaHOTO 00’ €KTa
3IIMCHIOETBCS BIAMOBIAHO O TOMSAPHOI MOAENi (CXeMH) IHXKEKLil CTpyMmy
IpH 3aaHiil CyMi BIaCHUX 3HaYCHb TEH30pa MPOBIOHOCTI cepenoBuuia. Has-
BHICTh TaKoro BHAY [aHUX 3HAYHO NPHIUBHAIIYE IPOLEC MOIAIBIIOrO
PO3B’s13aHHS ITOCTABJICHO]T 33/1aui, 110 3py4HO, 30KpeMa, TIpu Bepudikamii po-
3po6JieHOro aBTopaMu MeToxy. BifnoBiqHa 3amaya 3BOIUTHCS 10 iTepamiii-
HOTO pO3B’sI3aHHA cepii 3a71a4 Uil piBHAHB TUIly Jlamaca, e 3aMicTh «Ipu-
TPaHUYHHUX YHCIIOBUX aHaJOriB piBHAHb Tumy Komri-Pimana» ¢irypyroTs
CITIBBIJHOIICHHS KBa3iOPTOrOHAIBHOCTI 3a CHEL[JIbHUX THUIIB YMOB OITH-
Mizauii. A came: MiHiMi3younii QyHKIiIOHaT MOOY0BaHUH 3 ypaxXyBaHHSIM
ymoB Tuny Komri-PimMana, criiBBiZHOMIEHHS MK BiIIOBIIHUMHU TEH30PY aHi-
30Tporii BIaCHUMH 3HAUCHHSAMH, & TAKOXK PETyJISPU3YI0YOro JI0JaHKY; YMO-
BU-00MexeHHs c(hOPMOBaHI Ha OCHOBI YMOB €JIMITHYHOCTI.

KarouoBi ciioBa: momoecpagis npuknadenux Keazinomenyianie, Keasi-
KOHGhOpMHI 8i000padicenHs, aHizomponis, iI0eHmu@ikayis, HeliHilHi 3a0ayi.
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