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METHOD FOR THE MAXIMIZATION OF THE LIKELIHOOD
FUNCTION OF SPEECH AUTOREGRESSIVE PARAMETERS
BASED ON LINE SPECTRUM PAIRS

The paper considers the estimation of the parameters of auto-
regressive model at additive white noise background. The principle of
maximum likelihood is used for this purpose. The main goal is to find
the maximum of likelihood function depending on parameters of
autoregressive model. Representation of likelihood function through
line spectrum pairs and other alternative parameters is presented. This
provided possibility of likelihood function maximization by KNITRO
algorithm. The presence of multiple local minima of the considered
likelihood function is shown. Experimental results including the
comparison with widely used expectation-maximization (EM) method
are presented for the real speech signals.

Key words: likelihood function, autoregressive processes, line
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Introduction. Autoregressive models are widely used in the fields of
audio and image processing, analysis of economical processes and other
areas. They also obtained a wide implementation in digital speech
processing [1]. The majority of contemporary digital speech processing
methods are based the autoregressive (AR) model of speech

p
s(l) == ars(l—k)+gw(), (1)
k=1

where s(/) is a speech signal; w(/) is an excitation process modeling the
air flow at the glottis; g is a gain; a,,k =1,..., p are the AR coefficients
defining the shape of vocal tract. The order p is usually taken as 10.
When observation noise is absent, the coefficients g, are usually
found by a minimization of the criterion
L p
min Y (s(0)+ Y a s —k))*,
ey =] k=1
which leads to a system of p linear Yule-Walker equations [1].

The performance of speech processing systems based on AR model can
significantly decrease at the presence of background noise, i.e. when the
additive noise v(/) is present and we are given only noisy observations z(/) :
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z(l) = s(/)+v(]). 2)

The degradation of such systems is explained by the lack of efficient
noise-robust methods of AR parameters estimation. A big amount of works
are dedicated to this subject (see, e.g. review in [2]). Starting with the paper
of Lim and Oppenheim, the most popular approach to identification of AR
models (1) remains maximization of likelihood function (LF) of speech AR
parameters [2]. A majority of existing methods are the modifications of
Expectation-Maximization (EM) method which provides maximum
likelihood estimation of speech AR parameters. The rigorous substantiation
and implementation of this method was given in work of Gannot et al. [2]
which can be considered as a reference point for other methods. The weak
points of this approach are the necessity of good initial approximation and
high computational expenses of Kalman smoothing.

For the maximization of likelihood function, we derive its alternative
representations using auxiliary parameters such as line spectrum pairs
(see, e.g. [3]). For the optimization of simplified likelihood function we
employ KNITRO optimization algorithm which is now widely used for
global optimization tasks [4, 5].

The structure of the paper is as follows. First, we define the likeli-
hood function and its expression via the line spectrum pairs. We then show
that the likelihood function of speech AR parameters may have multiple
local minima. After introducing one more alternative representation of
likelihood function, we show the results of implementation of proposed
approach to the estimation of AR parameters of real speech signals.

Likelihood function of AR parameters. Consider speech frame
which is a vector of L observations Z =[z(1),...,z(L)], where the values
z(l) are given by (2). The goal is to estimate AR coefficients a;
(k=1,.., p) and the gain g having the vector Z .

In speech coding applications, L is usually can taken as 200, which
is equivalent to 25 ms when the sampling frequency is 8000 Hz (it is
usually supposed that the parameters @, (k=1,..,p) and g can be
treated as constant during approximately 25 ms). In the following, we use
values p =10 and L =200 .

The likelihood function of observation vector can be presented as:

1

Z|ay,...a =

f ( | SERLE) png ) m

which is a conditional Gaussian probability density of the

observations vector Z . Here C denotes the covariance matrix of Z ; it

depends on the gain and the AR coefficients. The principle of maximum

likelihood states that given Z , the optimal parameters maximize the
likelihood function (3) subject to some physical constraints.

136

exp(-52'C'2), 3)



Cepis: ®isuko-maTtemaTnyHi Hayku. Bunyck 18

Line spectrum pairs formulation. The direct computation of (3)
based on the models (1) and (2) is complicated [2, 6]. A better representa-
tion based on the spectrum P, (j) of the AR process s(n) is given by [6]:

2
R()=—7H= (j=1ows L), 4)
I +Z a 2L 2
k=1

In terms of the spectrum, we may represent the negative logarithm of

the likelihood as proposed in [6]'

Z(HF
Z 9 9 ) b ] P P
f(Z]a,a, 8= Z og(F (/)+P())+ /Z; v(])+P(])

Here the Z(j) form the spectrum of the observations, i.e., the

)

discrete Fourier transform of Z; P(j) is the known spectrum of the
observational noise v(/), estimated from the frames which do not contain

speech.

In order to incorporate the stability constraint, we use the spectral
representation defined in [7], according to which the AR spectrum (4) can
be written in the form

° =1,..,.L 6
e U=l (©)

where &=g? /2P, x=(x,,x,,.. .X,) Is the vector of ordered cosines of

B =

line spectrum pairs (LSP) x; = cos(®,_,) (k=1,2,..,p), and
Fi)=(=c) [T @ =x)?+0+epC T (¢;-x)* ()
k<p odd k<p even

with the constants ¢; =cos(27z;/L). The parameters x; are ordered so

that they satisfy the constraint
—1<x <x; <x3<..<x,,; <x,<l. ()
Thus, the spectrum (6) is determined by the spectral parameters
Xps X500 X)) and the gain &£.
Simplification of the optimization problem. To simplify the
statement of the problem, first, we introduce the constants

Z,=1z(j)}
and the functions
0;(x,8)=F;(x)/[P;F;(x)+&]. )

So, we have to minimize the function
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L
F (e, E) = D (~10g 0; (0, ) + Z,0, (x, E), (10)
j=1

with Q;(x) is defined by (9).

Our goal is to find the minimum of the function (10), taking into
account the constraints (8) and &£>0. For this purpose, we do the
transformations (simplifications) of the problem and apply the KNITRO
[4, 5] optimization algorithm.

Multiple local minima. Consider the AR signal s(/) generated by
the model (1) with g =0.388, white noise excitation w(/) and AR

coefficients
a=[-1.195,0.624,0.017,-0.345,0.259,0.121,-0.239,0.348,—0.210,—0.098].

(the coefficients correspond to a vowel sound «a» pronounced by a male
speaker). These coefficients correspond to &= 2.95x10™ and line
spectrum cosines
X, =[-0.941,-0.834,-0.473,-0.168,0.092,0.360,0.493,0.825,0.878,0.963].
The signal s(/) is then mixed according to the observation model (2)
with white noise v(/) with constant spectrum P, =0.194 (,j=1,...L),
corresponding to a signal-to-noise ratio of SNR =5 dB.
The KNITRO solver, started from different initial approximations,
found seven local minima of the function (10) with the constraint (8).

These points are presented in Table 1. Note that minima 3, 4, 7 are
degenerate, i.e., have x; = x,,, for some k. The minima are sorted by

increasing of objective function values.

The last two rows of Table 1 present the spectral distortion (SD) and
Itakura-Saito measures (IS) between the ideal parameters (x,,&,) and the
parameters (x,£) of corresponding minimum. These measures are

commonly used in the analysis of speech AR parameters (see, e.g. [6]). In
our terms of F', & these measures can be expressed as follows

2
L F.(x

SD(x,,x,) = lz 101og10ﬁ ,
L= Fi(x;)

(note that the SD is usually calculated as gain-independent [6]; hence there
is no factor & /¢&,).

log(=———

|6 fita) G
& Fj(xl) & Fj(xl)

1
1S(x1,6,%,,¢,) :_E
Lj:l

3 F,~<xz>)_1}.
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The data in Table 1 show that the global minimizer fits the best by
both criteria.

Table 1
Several local minima of function (10)
Min.1 | Min.2 | Min.3 | Min4 | Min.5 | Min.6 | Min.7
X, —0.991 | —0.499 | —0.994 | —0.235 | —0.997 | —0.988 | —0.908
X, —0.499 | -0.468 | —0.469 | 0.009 | —0.294 | -0.977 | —0.908
X, —0.453 | -0.347 | -0.469 | 0.009 | —0.187 | 0.026 | —0.565
X, -0.116 | -0.012 | -0.016 | 0.332 | —-0.033 | 0.399 0.299
X 0.076 | 0.144 | 0.236 0.45 0.22 0.460 0.422
Xg 0.433 | 0.499 0.47 0.613 | 0.486 | 0.626 0.565
x; 0.622 | 0.647 | 0.647 | 0.744 | 0.653 | 0.739 0.709
Xg 0.829 | 0.841 | 0.836 | 0.861 0.84 0.860 0.852
Xy 0.875 | 0.878 | 0.877 | 0.888 | 0.878 | 0.886 0.883
X0 0.955 | 0.962 | 0.959 | 0.978 | 0.962 | 0.977 0.97
¢ 1.1x107#4.0x107{6.2x1073|1.7x1076|3.9x1073|4.7x107°| 1.7x107
f 24224 | 24.352 | 24.445 | 25.785 | 26.004 | 28.96 | 29.134
[x=x,] | 037 | 064 | 046 | 139 | 067 | 093 | 0.66
SD 7.0 12.1 8.3 22.2 10.1 15.8 10.7
IS 7.4 221.0 23.4 |6.5x10%| 78.9 |1.2x10%| 1243

Alternative formulation. Let’s introduce another set of parameters
related with LSP. This formulation is mathematically identical to our
initial formulation, however:

(1) The formulation is based on more physical quantities. Unlike log F; , the
quantities log G; = —log P, () have a direct physical interpretation.
(i1) In particular, positive lower bounds on the new variables x} imply the

nondegeneracy of the spectrum.
(iii) The interval analysis may also improve since the dependence structure

is different.
Thus, we introduce the new set of variables
-1/ .
Zpn =6 Vp g = zpa% (i=1,..,p),
so that

X =212y, 6= Z;fl'

Then
=l _
G,(2)=F(j) =F;/¢
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is still polynomial:

2 2
Gﬂz):ﬂ—qﬂ[ 11 (aﬁﬁv—qu +[l+cﬂ( 11 (aﬁpj—ng.

k<p odd k<p even
Besides,
0,(x,&) = R,(x,&) ",
where
— -1
R,(x,&) =P +G,(2)".

Therefore, the objective function (10) becomes
7.
f(2) =2 (logR; +—5),
7 R,

and the constraint (8) is now

TZp T2 <..<z,<z
By introducing the positive variables
xi=z;—z_ (=12,...,p+1),

p+l

we get
1
Z =5 D EX)
2 J
where ¢; =1 if j<i and ¢&; = -1 otherwise.

The a priori ranges for x} ,j =1,.., p+1, estimated from clean speech

data, are given in Table 2 (to compute statistical quantities representative
for speech, we used N = 23294 frames of clean speech).

Table 2

Bounds for the variables x|

NN x| [ x| % | % | % | %o | X
Lower | 0.02 | 0.03 | 0.03 |0.049]0.080]0.064]0.074]0.049]0.033]0.006]0.002
Upper | 0.869[0.972]1.860]2.128]2.377(2.392(2.444[2.025]1.542[0.784]0.209

Thus we have a bound-constrained problem in the x}. We need to
minimize function
Z;
R,(x)

[ (X)) =D (log R, (x) + ) (11
j

where
n — n—1
R, (x)=P; +G;(x)
and G;(x') is given by
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G,(x)=2"P[(1-c)( T[] e I)Zxk+(c +1) Z D+
k<p odd J=k+1
p+l

(I+e)C [T e 1)Zxk+<c +1) Y x5 D71

k<p even j=k+
This optimization problem is subject to the constraints
X <x'<x (12)
with the bounds as defined in Table 2.
Multiple local minima (alternative formulation). Consider the
example from Section 3.2 in x'-domain. The parameters & =2.95x107*
and x, correspond to

xy =[0.132,0.243,0.812,0.689,0.586,0.603,0.300,0.750,0.119,0.192,0.083]

(this point satisfies the constraint (12)).

The KNITRO solver, started from different initial approximations,
found three local minima of the function (11) with the constraint (12). To
compare with Table 1, we transformed these points to x -domain. They are
presented in Table 3.

Table 3
Minima 1-3 of function (11) with constraint (12)
Min.1 Min.2 Min.3
X, —0.989 —0.991 —0.871
X, —0.580 —0.692 —0.858
X, -0.457 —0.670 —0.504
Xy —0.196 0.069 0.160
Xs 0.027 0.261 0.281
X 0.403 0.480 0.516
x; 0.600 0.654 0.667
Xg 0.824 0.837 0.843
Xy 0.874 0.878 0.879
X0 0.951 0.960 0.964
I 1.7¢—4 6.7¢-5 4.1e-5
f 25.17 28.03 29.38
k- x, 03 0.4 0.5
SD 55 74 7.9
1S 2.4 11.9 22.1

141



MatematuyHe Ta KOMI'I'POTepHe MozentoBaHHA

Comparing Tables 1 and 3, we see that the «alternative» global
minimizer provides better values of quality criterions (especially Itakura-Saito
measure). The G -plots are present at the Figure 1. All minima quite well
approximate the clean spectrum at the lower frequencies while the global one

gives the closest approximation for the middle and upper frequencies.
15 " T r
: : || = = =clean

_
(=]

L5

(=]

Power spectrum, dB

1
o
L

-10 i i i
0 50 100 150 200

Fig. 1. Spectra log G, (j=1,...,L) for the clean spectrum
and three local minima of the function (11)

Here arises a question: why there are just three local minima? What
about the other minima from Table 1? The answer is that those minima
does not satisfy constraint (12). From the previous experience, additional
minima may arise due to the introduction of additional constraints.

It was also noted that for the alternative formulation the KNITRO
algorithm works faster (i.e. it required lesser number of iterations) as
compared with initial one (probably, since the problem is bound constrained).

Experimental results. Consider a fragment of real speech signal
pronounced by male speaker. The duration of fragment is 40 frames
(8000 samples, i.e., 1 sec). White noise with signal-to-noise ratio of 5 dB
was used. We compared KNITRO with widely used Expectation-
Maximization (EM) method which provides the local maximization of
likelihood function [2, 6]. The application of EM method to the estimation
of speech AR parameters in frequency domain was shown in [3]. It does
not require the computation of derivatives and has a simple realization.
The KNITRO algorithm was initialized by the estimate from the previous
frame. The constraints (12) were used. The number of iterations was
limited to 25. The first results showed the effect of the «narrow peaks».
The typical situation is shown at the Figure 2.
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Fig. 2. Speech example 1: Spectra log G j (j=1,...,L) for the clean spectrum,
EM spectrum and KNITRO spectrum for the real speech frame
Since the narrow peaks are explained by the small differences of
variables x/, we shortened the range used in (12). The 90% percentile
limits are shown in Table 4. It allowed to improve the situation. The
example is shown at the Figure 3 (all the data are the same as for the

Figure 2). It can be seen that speech resonances at the lower frequencies
are now reproduced much more accurately.

The average values of Spectral Distortion and Itakura-Saito measures
for 40 frames are given in Table 5.
Table 4
Stricter bounds for the variables x ;. (90% percentile limits)

Xpo | Xy | Xy | Xy | X | Xg | X | Xy | Xor | Xy Xy
Lower | 0.15 |0.16]0.2410.290.46]0.45]0.41]0.35]0.11| 0.02 | 0.02
Upper | 0.45 [0.61]0.72]1.09]1.36|1.36]1.25|1.05 |0.61| 0.23 | 0.09

15

= = =clean
—_—EM
10 KNITRO ||

Power spectrum, dB

0 50 150 200

100
Frequency
Fig. 3. Speech example 1: Spectra log G, (j=1,...,L) for the clean spectrum, EM

spectrum and KNITRO spectrum for the real speech frame with 90%-constraints on x;-
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Table 5
Speech quality criteria for the EM and KNITRO methods
EM KNITRO
SD 5.5 5.8
Ay 14.7 54

The results from Table 5 show that both EM and KNITRO algoritms
provide comparable mean spectral distorition value (5.5 and 5.8 respec-
tively), while the value of Itakura-Saito mesure is much less for the
KNITRO algorithm. This can be explained by more precise estimation of
gain coefficient by proposed approach while the general form of spectrum
for both methods is approximately the same.

Conclusions. In this paper we considered estimation of parameters of
autoregressive model at noise background. At first, we introduced
representation of likelihood function via line spectrum pairs and additional
equivalent set of parameters. We have shown the presence of multiple local
minima of likelihood function for speech autoregressive parameters. For the
optimization of objective function the KNITRO algorithm was implemented.
The preliminary experimental results show that the proposed approach
provides better performance in comparison with widely used expectation-
maximization (EM) in terms of Itakura-Saito measure while mean spectral
distortion value is approximately the same. This can be explained by more
precise estimation of gain coefficient by proposed approach while the general
form of spectrum for both methods is approximately the same.
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METOA MAKCUMI3ALII ®YHKLIT NPABOOMNOAIEHOCTI
ABTOPEMPECUBHUX MAPAMETPIB MOBHOIO CUTHAIY,
3ACHOBAHWW HA BUKOPUCTAHHI NIHINHUX
CNEKTPAIIbHUX MNMAP

VY craTTi po3riIsiHYTO 33javy OLIHIOBAaHHS MapaMeTpiB aBTOPErpEeCcHB-
HOI MOJIelli 32 HasiBHOCTI aAWTUBHOrO Oijoro mrymy. J{is mporo 3actoco-
BaHO MPHHIMI MaKCUMAJIbHOI MPaBAONOi0HOCTI. ['0JI0BHUM 3aBIaHHAM €
3HAXOMKEHHS TJI00aNbHOr0 Makcumymy (yHKIIT mpaBmomogiOHOCTI, 1m0
3aJIOKHUTH BiJl MApaMeTPiB aBTOperpecuBHOI Mozeni. OTpuMaHo Bupa3 ¢y-
HKII1 IpaBIOMoaiOHOCTI Yepe3 JiHiIHHI CIIeKTpalbHi Mapy Ta 1HIINN allbTe-
pHaTHBHHI HaOip mapamerpiB. Lle Hagamo MOXIMBICTH eeKTHBHOI Mak-
cuMizamii ¢pyHKuii npaBomnoidHoCTI 3a gomoMororo anroputmy KNITRO.
IMoka3aHo HasBHICTH 0araThOX JIOKAJIBHUX MIHIMYMIB (pyHKLII IpaBaoro-
IIOHOCTI Ul aBTOPErPECUBHUX IapaMeTpiB MOBHUX CHUTHamiB. Takox
NpPeICTaBIICHI eKCIIePUMEHTAIbHI Pe3yJIbTaTH, 110 BKIIOYAIOTh OPIBHIHHSI
i3 3araJbHOBHKOPHUCTOBYBaHHM METOZOM expectation-maximization (EM)
JUIS peabHUX MOBHUX CHUTHAIIIB.

KorouoBi cimoBa: ¢yuxyis npasdonodibnocmi, asmopecpecusnuii
npoyec, NiHiliHi CNeKMpanbHi napu.
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