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METHOD FOR THE MAXIMIZATION OF THE LIKELIHOOD 
FUNCTION OF SPEECH AUTOREGRESSIVE PARAMETERS 

BASED ON LINE SPECTRUM PAIRS 

The paper considers the estimation of the parameters of auto-
regressive model at additive white noise background. The principle of 
maximum likelihood is used for this purpose. The main goal is to find 
the maximum of likelihood function depending on parameters of 
autoregressive model. Representation of likelihood function through 
line spectrum pairs and other alternative parameters is presented. This 
provided possibility of likelihood function maximization by KNITRO 
algorithm. The presence of multiple local minima of the considered 
likelihood function is shown. Experimental results including the 
comparison with widely used expectation-maximization (EM) method 
are presented for the real speech signals. 

Key words: likelihood function, autoregressive processes, line 
spectrum pairs.  

Introduction. Autoregressive models are widely used in the fields of 
audio and image processing, analysis of economical processes and other 
areas. They also obtained a wide implementation in digital speech 
processing [1]. The majority of contemporary digital speech processing 
methods are based the autoregressive (AR) model of speech  
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where ( )s l  is a speech signal; ( )w l  is an excitation process modeling the 
air flow at the glottis; g  is a gain; , = 1,...,ka k p  are the AR coefficients 
defining the shape of vocal tract. The order p  is usually taken as 10.  

When observation noise is absent, the coefficients ka  are usually 
found by a minimization of the criterion  
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which leads to a system of p  linear Yule-Walker equations [1]. 
The performance of speech processing systems based on AR model can 

significantly decrease at the presence of background noise, i.e. when the 
additive noise ( )v l  is present and we are given only noisy observations ( )z l :  
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 ( ) = ( ) ( ).z l s l v l  (2) 
The degradation of such systems is explained by the lack of efficient 

noise-robust methods of AR parameters estimation. A big amount of works 
are dedicated to this subject (see, e.g. review in [2]). Starting with the paper 
of Lim and Oppenheim, the most popular approach to identification of AR 
models (1) remains maximization of likelihood function (LF) of speech AR 
parameters [2]. A majority of existing methods are the modifications of 
Expectation-Maximization (EM) method which provides maximum 
likelihood estimation of speech AR parameters. The rigorous substantiation 
and implementation of this method was given in work of Gannot et al. [2] 
which can be considered as a reference point for other methods. The weak 
points of this approach are the necessity of good initial approximation and 
high computational expenses of Kalman smoothing. 

For the maximization of likelihood function, we derive its alternative 
representations using auxiliary parameters such as line spectrum pairs 
(see, e.g. [3]). For the optimization of simplified likelihood function we 
employ KNITRO optimization algorithm which is now widely used for 
global optimization tasks [4, 5]. 

The structure of the paper is as follows. First, we define the likeli-
hood function and its expression via the line spectrum pairs. We then show 
that the likelihood function of speech AR parameters may have multiple 
local minima. After introducing one more alternative representation of 
likelihood function, we show the results of implementation of proposed 
approach to the estimation of AR parameters of real speech signals. 

Likelihood function of AR parameters. Consider speech frame 
which is a vector of L  observations = [ (1),..., ( )]Z z z L , where the values 

( )z l  are given by (2). The goal is to estimate AR coefficients ka  
( = 1,...,k p ) and the gain g  having the vector Z . 

In speech coding applications, L  is usually can taken as 200, which 
is equivalent to 25 ms when the sampling frequency is 8000 Hz (it is 
usually supposed that the parameters ka  ( = 1,...,k p ) and g  can be 
treated as constant during approximately 25 ms). In the following, we use 
values = 10p  and = 200L .  

The likelihood function of observation vector can be presented as: 

 1
1

1 1( | ,..., , ) = exp( ),
2det 2

T
pf Z a a g Z C Z

C
  (3) 

which is a conditional Gaussian probability density of the 
observations vector Z . Here C  denotes the covariance matrix of Z ; it 
depends on the gain and the AR coefficients. The principle of maximum 
likelihood states that given Z , the optimal parameters maximize the 
likelihood function (3) subject to some physical constraints. 



Серія: Фізико-математичні науки. Випуск 18 

137 

Line spectrum pairs formulation. The direct computation of (3) 
based on the models (1) and (2) is complicated [2, 6]. A better representa-
tion based on the spectrum ( )sP j  of the AR process ( )s n  is given by [6]: 
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In terms of the spectrum, we may represent the negative logarithm of 
the likelihood as proposed in [6]:  
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Here the ( )Z j  form the spectrum of the observations, i.e., the 
discrete Fourier transform of Z ; ( )P j  is the known spectrum of the 
observational noise ( )v l , estimated from the frames which do not contain 
speech. 

In order to incorporate the stability constraint, we use the spectral 
representation defined in [7], according to which the AR spectrum (4) can 
be written in the form  

 ( ) =    ( = 1,..., ),
( )s

j
P j j L

F x
  (6) 

where 2 1= / 2 pg  , 1 2= ( , ,..., )px x x x  is the vector of ordered cosines of 

line spectrum pairs (LSP) = cos( )   ( = 1, 2,..., ),k p kx k p   and  

 2 2

  
( ) = (1 )( ( )) (1 )( ( ))j j j k j j k

k p odd k p even
F x c c x c c x

 

       (7) 

with the constants = cos(2 / )jc j L . The parameters kx  are ordered so 
that they satisfy the constraint  
 1 2 3 11 < < < < ... < < < 1p px x x x x . (8) 

Thus, the spectrum (6) is determined by the spectral parameters 
1 2, ,..., px x x  and the gain  .  

Simplification of the optimization problem. To simplify the 
statement of the problem, first, we introduce the constants  

2=| ( ) |jZ Z j  
and the functions  
 ( , ) = ( ) / [ ( ) ].j j j jQ x F x P F x   (9) 

So, we have to minimize the function  
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with ( )jQ x  is defined by (9).  
Our goal is to find the minimum of the function (10), taking into 

account the constraints (8) and > 0 . For this purpose, we do the 
transformations (simplifications) of the problem and apply the KNITRO 
[4, 5] optimization algorithm. 

Multiple local minima. Consider the AR signal ( )s l  generated by 
the model (1) with = 0.388g , white noise excitation ( )w l  and AR 
coefficients  

= [ 1.195,0.624,0.017, 0.345,0.259,0.121, 0.239,0.348, 0.210, 0.098].a       
(the coefficients correspond to a vowel sound «a» pronounced by a male 
speaker). These coefficients correspond to 4= 2.95 10   and line 
spectrum cosines  

0 = [ 0.941, 0.834, 0.473, 0.168,0.092,0.360,0.493,0.825,0.878,0.963].x      
The signal ( )s l  is then mixed according to the observation model (2) 

with white noise ( )v l  with constant spectrum = 0.194jP  ( = 1,...,j L ), 
corresponding to a signal-to-noise ratio of = 5SNR  dB. 

The KNITRO solver, started from different initial approximations, 
found seven local minima of the function (10) with the constraint (8). 
These points are presented in Table 1. Note that minima 3, 4, 7 are 
degenerate, i.e., have 1=k kx x   for some k . The minima are sorted by 
increasing of objective function values. 

The last two rows of Table 1 present the spectral distortion (SD) and 
Itakura-Saito measures (IS) between the ideal parameters 0 0( , )x   and the 
parameters ( , )x   of corresponding minimum. These measures are 
commonly used in the analysis of speech AR parameters (see, e.g. [6]). In 
our terms of F ,   these measures can be expressed as follows  

2
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(note that the SD is usually calculated as gain-independent [6]; hence there 
is no factor 1 2/  ).  
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The data in Table 1 show that the global minimizer fits the best by 
both criteria. 

Table 1 
Several local minima of function (10) 

 Min.1 Min.2 Min.3 Min.4 Min.5 Min.6 Min.7
1x  –0.991 –0.499 –0.994 –0.235 –0.997 –0.988 –0.908 

2x  –0.499 –0.468 –0.469 0.009 –0.294 –0.977 –0.908 

3x  –0.453 –0.347 –0.469 0.009 –0.187 0.026 –0.565 

4x  –0.116 –0.012 –0.016 0.332 –0.033 0.399 0.299 

5x  0.076 0.144 0.236 0.45 0.22 0.460 0.422 

6x  0.433 0.499 0.47 0.613 0.486 0.626 0.565 

7x  0.622 0.647 0.647 0.744 0.653 0.739 0.709 

8x  0.829 0.841 0.836 0.861 0.84 0.860 0.852 

9x  0.875 0.878 0.877 0.888 0.878 0.886 0.883 

10x  0.955 0.962 0.959 0.978 0.962 0.977 0.97 
  1.1×10–4 4.0×10–5 6.2×10–5 1.7×10–6 3.9×10–5 4.7×10–6 1.7×10–5

f  24.224 24.352 24.445 25.785 26.004 28.96 29.134 

0x x  0.37 0.64 0.46 1.39 0.67 0.93 0.66 
SD  7.0 12.1 8.3 22.2 10.1 15.8 10.7 
IS  7.4 221.0 23.4 6.5×104 78.9 1.2×103 124.3 

Alternative formulation. Let’s introduce another set of parameters 
related with LSP. This formulation is mathematically identical to our 
initial formulation, however: 
(i) The formulation is based on more physical quantities. Unlike log jF , the 

quantities log = log ( )j sG P j  have a direct physical interpretation. 
(ii) In particular, positive lower bounds on the new variables jx  imply the 

nondegeneracy of the spectrum. 
(iii) The interval analysis may also improve since the dependence structure 

is different. 
Thus, we introduce the new set of variables  

1/
1 1:= ,   :=    ( = 1,..., ),p

p i p iz z z x i p 
   

so that  
1 1= / ,   = .p

i i p px z z z 
   

Then  
1( ) ( ) = /j s jG z P j F   
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is still polynomial:  
2 2

1 1
  

( ) (1 ) ( ) 1 )( ( ) .j j p j k j p j k
k p odd k p even

G z c z c z c z c z 
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Besides, 
1( , ) = ( , ) ,j jQ x R x    

where  
1( , ) := ( ) .j j jR x P G z   

Therefore, the objective function (10) becomes  

( ) = (log ),j
j

jj

Z
f z R

R
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and the constraint (8) is now  
1 0 1 1= < < ... < < .p p pz z z z z   

By introducing the positive variables  
1=    ( = 1,2,..., 1),i i ix z z i p    

we get 
1= ,
2i ij j

j
z x   

where = 1ij  if j i  and = 1ij   otherwise.  
The a priori ranges for , = 1,..., 1jx j p  , estimated from clean speech 

data, are given in Table 2 (to compute statistical quantities representative 
for speech, we used = 23294N  frames of clean speech). 

Table 2 
Bounds for the variables jx  

 1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  11x  
Lower 0.02 0.03 0.03 0.049 0.080 0.064 0.074 0.049 0.033 0.006 0.002
Upper 0.869 0.972 1.860 2.128 2.377 2.392 2.444 2.025 1.542 0.784 0.209

Thus we have a bound-constrained problem in the jx . We need to 
minimize function 

 ( ) = (log ( ') )
( ')
j

alt j
jj

Z
f x R x

R x
   (11) 

where  
1( ') = ( ')j j jR x P G x   

and ( ')jG x  is given by  
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This optimization problem is subject to the constraints  
 x x x     (12) 
with the bounds as defined in Table 2.  

Multiple local minima (alternative formulation). Consider the 
example from Section 3.2 in x -domain. The parameters 4= 2.95 10   
and 0x  correspond to 

0 = [0.132,0.243,0.812,0.689,0.586,0.603,0.300,0.750,0.119,0.192,0.083]x  
(this point satisfies the constraint (12)). 

The KNITRO solver, started from different initial approximations, 
found three local minima of the function (11) with the constraint (12). To 
compare with Table 1, we transformed these points to x -domain. They are 
presented in Table 3. 

Table 3 
Minima 1–3 of function (11) with constraint (12) 

Min.1 Min.2 Min.3
1x  –0.989 –0.991 –0.871 

2x  –0.580 –0.692 –0.858 

3x  –0.457 –0.670 –0.504 

4x  –0.196 0.069 0.160 

5x  0.027 0.261 0.281 

6x  0.403 0.480 0.516 

7x  0.600 0.654 0.667 

8x  0.824 0.837 0.843 

9x  0.874 0.878 0.879 

10x  0.951 0.960 0.964 
  1.7e–4 6.7e–5 4.1e–5 
f  25.17 28.03 29.38 

0x x  0.3 0.4 0.5 

SD  5.5 7.4 7.9 
IS  2.4 11.9 22.1 
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Comparing Tables 1 and 3, we see that the «alternative» global 
minimizer provides better values of quality criterions (especially Itakura-Saito 
measure). The G -plots are present at the Figure 1. All minima quite well 
approximate the clean spectrum at the lower frequencies while the global one 
gives the closest approximation for the middle and upper frequencies.  

 
Fig. 1. Spectra log jG  ( = 1,...,j L ) for the clean spectrum  

and three local minima of the function (11) 
Here arises a question: why there are just three local minima? What 

about the other minima from Table 1? The answer is that those minima 
does not satisfy constraint (12). From the previous experience, additional 
minima may arise due to the introduction of additional constraints. 

It was also noted that for the alternative formulation the KNITRO 
algorithm works faster (i.e. it required lesser number of iterations) as 
compared with initial one (probably, since the problem is bound constrained). 

Experimental results. Consider a fragment of real speech signal 
pronounced by male speaker. The duration of fragment is 40 frames 
(8000 samples, i.e., 1 sec). White noise with signal-to-noise ratio of 5 dB 
was used. We compared KNITRO with widely used Expectation-
Maximization (EM) method which provides the local maximization of 
likelihood function [2, 6]. The application of EM method to the estimation 
of speech AR parameters in frequency domain was shown in [3]. It does 
not require the computation of derivatives and has a simple realization. 
The KNITRO algorithm was initialized by the estimate from the previous 
frame. The constraints (12) were used. The number of iterations was 
limited to 25. The first results showed the effect of the «narrow peaks». 
The typical situation is shown at the Figure 2. 
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Fig. 2. Speech example 1: Spectra log jG  ( = 1,...,j L ) for the clean spectrum, 

EM spectrum and KNITRO spectrum for the real speech frame 
Since the narrow peaks are explained by the small differences of 

variables ix , we shortened the range used in (12). The 90% percentile 
limits are shown in Table 4. It allowed to improve the situation. The 
example is shown at the Figure 3 (all the data are the same as for the 
Figure 2). It can be seen that speech resonances at the lower frequencies 
are now reproduced much more accurately.  

The average values of Spectral Distortion and Itakura-Saito measures 
for 40 frames are given in Table 5.  

Table 4 
Stricter bounds for the variables jx   (90% percentile limits) 

 1x   2x  3x  4x  5x  6x   7x  8x   9x  10x   11x   
Lower 0.15 0.16 0.24 0.29 0.46 0.45 0.41 0.35 0.11 0.02 0.02
Upper 0.45 0.61 0.72 1.09 1.36 1.36 1.25 1.05 0.61 0.23 0.09

 
Fig. 3. Speech example 1: Spectra log jG  ( = 1,...,j L ) for the clean spectrum, EM 

spectrum and KNITRO spectrum for the real speech frame with 90%-constraints on jx  
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Table 5 
Speech quality criteria for the EM and KNITRO methods 

 EM KNITRO 
SD  5.5 5.8 
IS  14.7 5.4 

The results from Table 5 show that both EM and KNITRO algoritms 
provide comparable mean spectral distorition value (5.5 and 5.8 respec-
tively), while the value of Itakura-Saito mesure is much less for the 
KNITRO algorithm. This can be explained by more precise estimation of 
gain coefficient by proposed approach while the general form of spectrum 
for both methods is approximately the same. 

Conclusions. In this paper we considered estimation of parameters of 
autoregressive model at noise background. At first, we introduced 
representation of likelihood function via line spectrum pairs and additional 
equivalent set of parameters. We have shown the presence of multiple local 
minima of likelihood function for speech autoregressive parameters. For the 
optimization of objective function the KNITRO algorithm was implemented. 
The preliminary experimental results show that the proposed approach 
provides better performance in comparison with widely used expectation-
maximization (EM) in terms of Itakura-Saito measure while mean spectral 
distortion value is approximately the same. This can be explained by more 
precise estimation of gain coefficient by proposed approach while the general 
form of spectrum for both methods is approximately the same. 
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МЕТОД МАКСИМІЗАЦІЇ ФУНКЦІЇ ПРАВДОПОДІБНОСТІ 
АВТОРЕГРЕСИВНИХ ПАРАМЕТРІВ МОВНОГО СИГНАЛУ, 

ЗАСНОВАНИЙ НА ВИКОРИСТАННІ ЛІНІЙНИХ 
СПЕКТРАЛЬНИХ ПАР 

У статті розглянуто задачу оцінювання параметрів авторегресив-
ної моделі за наявності адитивного білого шуму. Для цього застосо-
вано принцип максимальної правдоподібності. Головним завданням є 
знаходження глобального максимуму функції правдоподібності, що 
залежить від параметрів авторегресивної моделі. Отримано вираз фу-
нкції правдоподібності через лінійні спектральні пари та інший альте-
рнативний набір параметрів. Це надало можливість ефективної мак-
симізації функції правдоподібності за допомогою алгоритму KNITRO. 
Показано наявність багатьох локальних мінімумів функції правдопо-
дібності для авторегресивних параметрів мовних сигналів. Також 
представлені експериментальні результати, що включають порівняння 
із загальновикористовуваним методом expectation-maximization (EM) 
для реальних мовних сигналів. 

Ключові слова: функцiя правдоподiбностi, авторегресивний 
процес, лiнiйнi спектральнi пари. 
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