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PARABOLIC BOUNDARY VALUE PROBLEMS
IN UNLIMITED PIECEWISE HOMOGENEOUS
WEDGE-SHAPED HOLLOW CYLINDER

The unique exact analytical solutions of parabolic boundary
value problems of mathematical physics in unbounded by variable
z piecewise-homogeneous by radially variable r wedge-shaped by
an angularly variable ¢ hollow cylinder were constructed at first
time by the method of classical integral and hybrid integral trans-
forms in combination with the method of main solutions (matrices
of influence and Green matrices) in the proposed article.

The cases of assigning on the verge of the wedge the boundary
conditions of Dirichlet and Neumann and their possible combinations
(Dirichlet — Neumann, Neumann — Dirichlet) are considered.

Finite integral Fourier transform by an angular variable, a Fou-
rier integral transform on a Cartesian axis by an applicative varia-
ble and a hybrid integral transform of the Hankel type of the sec-
ond kind on a segment of the polar axis with n points of conjuga-
tion were used to construct classic solutions of investigated initial-
boundary value problems.

The consistent application of integral transforms by geometric
variables allows us to reduce the three-dimensional initial bounda-
ry-value problems of conjugation to the Cauchy problem for a reg-
ular linear inhomogeneous 1% order differential equation whose
unique solution is written in a closed form.

The application of inverse integral transforms restores explicitly
the solution of the considered problems through their integral image.

Key words: parabolic equation, initial and boundary condi-
tions, conjugation conditions, integral transforms, hybrid integral
transforms, main solutions.

Introduction. The theory of boundary value problems for partial dif-
ferential equations and the equations of mathematical physics in particular,
is an important part of modern theory of differential equations, which is
developing intensively in our time. Its results are important for the devel-
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opment of many branches of mathematics, and numerous applications of
its achievements are importance for study of various mathematical models
of various processes and phenomena of physics, mechanics, chemistry,
biology, medicine, economics, ecology, technology, latest technologies.

Significant results from the theory of the Cauchy problem and boundary
value problems for equations of parabolic type were obtained in the well-
known works of V. Gorodetsky [2], Zhitarashu N., Eidelman S. [6], Zagor-
skiy T. [7], Ivasishen S. [8], Ladyzhenskaya O., Solonnikova V., Ural’ce-
va N. [14], Landis E. [15], Matiychuk M. [16], Pukalskyi I. [18], Friedman A.
[22], Eidelman S. [24] and other domestic and foreign mathematicians.

It is well known that the complexity of the studied boundary value
problems significantly depends on the properties of the coefficients of the
equations (different types of degeneracies and features of the coefficients)
and on the geometric structure of the region (smoothness of the boundary,
angular points, boundedness, infinity, etc.). At present, the properties of
solutions have been studied in detail and various methods for constructing
solutions (exact and approximate) of boundary value problems for linear,
quasilinear, and some nonlinear equations of different types (elliptic, para-
bolic, hyperbolic) in single-connected domains (homogeneous media)
have been developed and functional spaces of correctness of problems in
the sense of Hadamard have been constructed.

However, many important applied problems of thermomechanics,
thermal physics, diffusion, theory of elasticity, theory of electrical circuits,
oscillation theory, mechanics of a deformable solid lead to boundary value
problems and mixed problems not only in homogeneous environments
when the coefficients of the equations are continuous, but also in inhomo-
geneous and piecewise homogeneous environments when the coefficients
of equations are piecewise continuous or piecewise constant [4, 5, 19].

It is known that in addition to the method of separation of variables
(Fourier method) and its generalizations, one of the important and effec-
tive methods of studying linear boundary and mixed problems for partial
differential equations in homogeneous environments is the method of inte-
gral transforms, which allows to construct analytically exact solutions of
the considered problems through their integral image.

At the same time, for a rather wide class of linear boundary value
problems in piecewise homogeneous environments, the method of hybrid
integral transforms generated by the corresponding hybrid differential op-
erators on each component of connectivity of piecewise homogeneous
environment wiht different differential operators, or differential operators
of the same type, but with different sets of coefficients proved to be an
effective method of constructing their solutions [3, 9-12].

This article is a logical continuation of [13]. Integral images of the
only exact analytical solutions of parabolic initial-boundary value prob-
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lems of mathematical physics in an unbounded piecewise-homogeneous
wedge-shaped hollow cylinder were constructed in this article by means of
the method of integral and hybrid integral transforms in combination with
the method of principal solutions.

Formulation of the problem. Let’s consider the problem of con-
structing a classical solution of linear partial differential equations of para-
bolic type of the 2nd order [17]

ou; 82 10 a2' 82 82
J 2 ?) 2
— laf| —t+ = — |+ —————+a% — |u. +
ot l: " (6r2 ror r2 8(/)2 4 822 ! (1)

+xuy =t (e 2) rel); j=1n+1,
which is bounded in the set

n+1 n+1
D={(t,r,p,2):t>0rel, = I = U(RJ-_l;RJ-),R0 >0,R,,; =R < +o0;
j=1 j=1
@< (0;0,),0 <@y <27;2 € (—o0;+0)}
with initial conditions

uj(t.r,9.2)|o=9;(r.@.2); relj; j=Ln+1, 2)
boundary conditions
6Suj asuj .
=0; =0; s=0,1 j=1n+1, 3)
oz’ oz’
z=—0 Z=+00
0 0 0 _ . n+1 0 n+1 _
ay —+ P |u =000 2); |an —+Py |Una| =9(te2), (4)
or r=R, or r=R
one of the boundary conditions on the wedge boundaries [13]
uj |¢,:0 =05(t,r,2); uj|¢:% =w;(tr,z); j=1Ln+1, )
6uj S —
uj |(p:0 =0,;(t,r,2); ELD:% =-W,;(t,r,z); j=Ln+1, (6)
ou; )
£|¢,zo =05 (t.r.2); uj|q,:% =wy(tr,2); j=1in+1,  (7)
ou; . ou; T
%Lo:o =045(t,r,2); %Lp:% =-Wy;(t,r,z); j=Ln+l  (8)

and conjugate conditions [12]

Kk O k k © k
|:(aj1§+ﬂjl Uy — ajzg"'ﬂjZ Uy i1

here a;, a,; a,. x;. af. Bl — some constants;

=0;j=12k=1n, (9)

r=R,
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k ok k pk . . 0 0 n+1
cjk:azjﬁlj—aljﬂzj:to, Ci Co >0; a3 <0, B1 20, ay” 20,

Bit 200 |afi|+ By # 0 ags + B =0
ft,r.p.2)={fi(t.,r,0,2), f,(t,r,0,2),... f 1 (t,1,0,2)};
g(rl¢7z) = {gl(rlwlZ)vg2(rv¢lz)|"'vgn+1(rv¢lz)} 1 go (t1¢lz)l

9(t.@.2), 9p(t.r.2), Wy (t.r.2); (p=14;j=1n+1)
— are known real bounded continuous functions;
u(t,r,e,z) ={u (t,r,0,2),u, (t,r,0,2),...,u, (., 1,0, 2)}
— is desired real function wich is continuously differentiable by variable
t and twice-continuously differentiable by geometric variables (r,¢,z).
Let’s notice that:

1) in the case of ;=0 (j=1,n_+1) equation (1) is a classic three-
dimensional inhomogeneous thermal conductivity equation (diffusion)
for an orthotropic environment in cylindrical coordinates;

2) inthecase of &y =0, B =1 a5 =0, B5=1 af =2 p5=0;
af, =25, pE =0, here 2%, 1% — thermal conductivity coeffi-
cients, the conjugate conditions (9) coincide with conditions of ideal
heat (thermal) contact;

3) inthecase of o, =b,, B =1 af, =0, B =1 ak =21", g =0;
ak, =25, P, =0, here b, — coefficients of thermal resistance, the con-
jugate conditions (9) coincide with conditions of not ideal thermal contact.

Thus, in these cases 1, 2 (or 1, 3) considered parabolic boundary val-
ue problem of mathematical physics is a mathematical model of thermal

conductivity processes in an unlimited piecewise homogeneous wedge-
shaped hollow cylinder.

The main part. Let’s assume that the solutions of parabolic initial-
boundary problems of conjugation (1)-(4), (5), (9); (1)-(4), (6), (9); (1)-(4),
(1), (9); (1)-(4), (8), (9) exist, and defined and the unknown functions sat-
isfy the conditions of applicability of direct and inverse integral and hybrid
integral transforms [12, 20, 21].

Due to [21] let’s define finite direct F,; and inverse Fob

i integral
Fourier transforms relative to the angular variable ¢ e (0;¢,) by formulas:

Po

Foil (@)1= [ F(@Unu(@)de = f 4, (10)
0
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P = = 3 & f Ui (9) = 10, (11)
Po m=0
here
. zm
Ui (@) =sin(B110); P =—:
Do
2m+1
m 12 ((ﬂ) = sm(ﬂm 12(P) ﬁm 12 = M
20,
Um,zl (@) =cos(Br 2190); P21 = Pmizs
U 22(9) = €0S(Br 220); Brn2o = Brmars
s =0, e =1 if ik =11,12,21; m=1,2,3,..
62 = %; £2 =1ifm=123,..
In this case, the identity (12) is fulfilled for the integral operator
d?f .
Fonik {_2 } = _ﬁrﬁ,ik frik + Pris bKk=12, (12)
do
here

®p (1) =25 . R0+ D™ 1 (p) ]

0

7(2m+1
®m,12(f):¥f(o)+(_l)m_
2(00 gD(p:(po
df z(2m+1
O ()= -2 yn ZEMED .
do|,_o Po
df df
‘Dm,zz =—— +(—1)md—
=0 goqo:%

The integral operator F_ , due to the formula (10) as a result of
identity (12) three-dimensional initial boundary value problems of conju-

gation (1)-(4), (5), (9); (1)-(4), (6), (9); (1)-(4), (7), (9); (1)-(4), (8), (9)
puts in accordance the task of constructing classical solution of two-
dimensional differential equations of parabolic type of the 2nd order which

is limited in the set D' = {(t,r, 7):t>0relt;ze (—oo;+oo)}

2
Im ik —(az —62 10 VYimik |, o2 —62 —‘u + 72u =
ot L T o2 ror 2 7 aZZJ jm,ik ¥ XjUjm,ik = (13)

:Gjm,ik(t,r,z); rely; j=1n+1,

ou
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with initial conditions

ujmyik(t,r,z)|t=0 =0mi(r,2); rel;; j=1n+l (14)
boundary conditions
o°u. U
”:"k =0; ":"k =0; s=0,1; j=1n+1, (15)
oz o oz e

0o O 0 _ t 7):

0‘115+/311 Uim, ik = Gom.ik (1, 2);
S =Ry (16)

(a22+18_+ﬁ2r]2+1jun+1m,ik = O,k (t,2)
r r=R

and conjugate conditions

0 0
P p p p
Kaug’Lﬁjljupm,ik _(O‘jz E+:Bj2jup+l,m,ik:|

i=12; p=1n,

=0;

r=R,

(17

,1 .
here v ik = a5 8, i
2 !
Gimict.1,2) = o (tr,z)+a2;r 2o (tr,2).

Let’s apply to the two-dimensional initial-boundary value problem of
conjugation (13)-(17) integral Fourier transform on the Cartesian axis
(—o0; +00) relative to the variable z [20]:

+00

Flo@]= [ 9(@exp(-icz)dz = §(0), i=v-1, (18)

F’l[@(a)]zi [ a(@)expio2)do = g(2), (19)
rag]

F LZTSJJ =-0’F[g(2)] = -2 (o). (20)

The integral operator F due to the formula (18) as a result of identi-
ty (20) boundary value problem (13)-(17) puts in accordance the task of
constructing classical solution of one-dimensional differential equations of

B — parabolic type of the 2nd order which is limited in the set
D":{(t,r):t>0;r € Irf}
ol

im,ik 2 ~ 2 2 2\~
o _aerv]m‘ik[ujm,ik]+(azjo- +Zj)ujm,ik:

=Gpu(tr.o)irel;; j=1n+1

(21)
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with initial conditions

Ojmic 10| = Gjmac (o) Telys j=1n+1 (22)
boundary conditions
0 . .
(0‘1015+ﬂ101]u1m,ik = Jom,ik (1. 0);
=R (23)
0 - ~
(aggla_Jrﬂzanrl]Unu,m,ik =0 (r0)
r r=R

and conjugate conditions

0 - 0 -
|:[ajpl 6_r+ ﬂjpljupm,ik —[ajpz 5+ ﬂjpzjup+l,m,ik:|

j=12 p=1n,

(24)

r=R,

2
Vim,i , , .
here B, =—+—-——-——— — classical Bessel differential operator.
mik arZ r ar r2

To the one-dimensional initial-boundary problem of conjugation
(21)-(24) let’s apply finite hybrid integral Hankel transform of 2nd kind

relative to the radial variable r in piecewise homogeneous segment 1, of
n conjugation points [12]:

R
Msn[f(r)]:j f (P (r, 4 )o(r)rdr = f(4,), (25)
RO
> V(I’ )
Z WA g, (26)
2 T
~ n+l R,
Mo [ B LT (1] = =22 F(2) =278 [ TV, (r, Ay)orrdr —
k=1 R
2 0\t o df
—a Roo'l(“n) Vi (Ro» 4) A +ﬂ11 j + @7)
r=R,
n+ na df n+
+an+1R0'n+1(a221) N Visa (R4 )[azzl_ Ba2 1fj
r=R

Spectral function V (r, 4,), weight function o(r) and hybrid Bessel
n
differential operator By ;) = Zajge(r— Ri.)0(R;-r)B, . written in

[12], take part in formulas (25)-(27) (6(x) is the Heaviside step function).
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Let’s write the differential equations (21) and the initial conditions
(22) in matrix form

0 . 1 - - B}
[a_ 1ZBVMJk +q12(0)ju1m,ik (t,r.o) Gy ik (t.1,0)
0 2 2 - ¢ .
a_az Vamic +0d; (o) Uzm,ik( \1,0) - Gom.ik (t,r,o) (28)
0 2 2 B -
(E‘ B, Lt q”*l(a)ju"*l'm’ik (tr.o)| |Gnimix (t, r,a)_
Uy ik (1, 0) [ Gym.ix (1, 0) |
Upm,ik (t,1,0) _| Gomi(r.0) ’ 29)

ﬂn+1,m,ik (t,l’,G) t=0 gn+l,m,ik (r,O')

2 2 2 2.
here qj (o) =a;0" +xj; j=Ln+l

Let’s represente the integral operator H, which operates due to the
formula (25) as an operator matrix-row:

R, R,
M., [,.,]:[I SN A)agrdr [V, (1, Ag)aprdr
R, R,
. - (30)
J‘ =V (r, Ag) o, rdr J‘"'le(l’,/ls)amll’dl’J.
R4 R,

Let’s apply the operator matrix-row (30) to the problem (28), (29) ac-
cording to the matrix multiplication rule. As a result of the identity (27), we

get a Cauchy problem for ordinary differential equations of the 1st order
n+l d )
Z [a+ 232 + 7f + qJ? (G)Jujm,ik (t, A, o) =

i=1

n+l ~ 1
=Y Gk (. 45,0) - Rooy (a1 ) Vi(Ro, A Gomc (o) + (31)
j=1

,1 ~
+a§+1RUn+l (aggl) Vn+l(R’ ﬂ's)gm,ik (t’ O-)’

n+l n+1 21
Zajm,ik (t. 4, 0) :Zgjm,ik (45, 0), (32)
j=1 t=0 j=1
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RJ
where Gy, i (t, 4, 0) = [ Gy (61, 0)V;(r, A)ojrdr; j=1n+1,
RJl

Ri
G ik (t. 45, 0) = JGjm'ik(t,r,o)Vj(r,/ls)ajrdr; j=1n+1,
er

RJ
Gimic (45,0) = [ Gjmic (1 o)V;(r A)ogrdr, j=1n+1
R 1

Let’s suppose that max{qlz(a),qg(a),...,qﬁﬂ(a)} =q12(a) and put
everywhere }/JZ = ql2 (a)—qu(a); i =1L n+1. Cauchy problem (31), (32)
takes the form

du, ik N .
dn;:,l +A2(/15‘o-)um,ik = Gm,ik (t,ﬂs,d)—

2 0\1 -
_alRoo'l(all) Vi(Ry, 4) Gom ik (t, o) + (33)

-1 _
+a§+1RUn+1 (0‘;;1) Vn+l(Rv ﬂs)gm,ik (tv O-)v

Lim,ik (t, /15 ) O-)|t:0 = g:m,ik (j’s o), (34)
n+l

here Gm,ik (tv ﬂs ' O-) = Z ljjm,ik (t’ ﬂ’s ’ 6)’
j=1

~ n+l . ~ n+l
Gk (4:0) = 2. Gjn ik (45:0); G (1,0) = @i (1,0);
=1 -1

Az(ﬂs,a) = /152 + azzlo'2 +;(12.
We can directly check that the only solution of the Cauchy problem
(33), (34) is the function

t
Ui (8 251 0) = N(t, 45, 0) G i (A5, 0) + [N (=7, 4, 0)
0

= -1
X[Gm,ik(t.zs,a)—afRool(aﬁ) Vi (R, 4)Gom ik (o) + (35)

-1
+a'rirlRo-nH (“Qzﬂ) Vn+1(Rv /Is)gm,ik (t,U):| dT,

here N(t, A,,0) = exp(—A? (4, 0)t). is solving function (Cauchy function).

Sy
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The superposition of operators M, and M’ is a single operator

(Mg, oMo =M oMy, =1). Let’s represent the operator M as in-
verse to operator (30), as the operator matrix- column
i' Vy(r, )
s=1 ||V(r,/15)||
V(L A)
. S il
Mo 1= Vel (36)
i” n+1(r ﬁ’ )
S VeaP

Let’s apply operator matrix-column (36) to the matrix-element
[ G ic (t, 4, ) |, where the function G, i (t, 4, o) is defined by formula (35)

due to the matrices multiplication rule. As a result we get the only solution of
one-dimensional initial boundary problem of conjugation (21)-(24):

15

e (110) = N 25,0 (1) W?;1ﬁ
s=1 r
iiN(t 34, 0)G, 1 (7, Ay, 0)d T Vi (r/1)
" T A 0 )om ik (T o
s=10 K "\/(rl)"

— o 1
+(—a12Roal(alol) 1)2.[N(t—r,ﬂs,a)Vl(Ro,ﬂs)g()myik(r,a)dz—x (37)

s=1¢

Vi(r, ) . ot
X n+1RO_n+1(a221) J-N(t7T'ﬂ's'o_)\/n+l(R’ﬂ's)><
IV (r, 29| -1
Xgmik(fv M j=1n+1
| v 20

If to apply consistently inverse operators F* and F 1k to functions
Ujm.ik (t, 1, ), which are defined by formulas (37) and perform the some
simple transformations, we get functions

n+1t Ry @y +oo

ujatre)=> | HE,p(t orppa, 2=z, pa,é)x

P=l0R,,

n+l Re @5 +o0

xappdédadpdr+z .[ .[ I Ejp(t,r,p p.a,2=8)g,(p,a, &)
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n+1 t Ry 4o

xappdgdadp+2ajpjj jQ}E(t,r,r,p,@z,g)opp*ldgdpdﬁ (38)
p=1 OR'H—OO

(Wi t-rrp.02- 85,8 +

t

+

0
+sz;yik(t—r,r,(/),a,Z—é)g(r,a,f)]dédadr; j=ln+l

Functions (38) define the only solutions of parabolic initial boundary

problems of conjugation (1)-(4), (5), (9); (1)-(4), (6), (9); (1)-(4), (7), (9);

(2)-(4), (8), (9) with appropriate values of ik (11,12, 21, 22).
In formulas (38) there are components

O'—roe
+
8 > 8

EN(tr.pp.a,1)=—o Z em KX (1, 0. 2)U i (@)U iy (@)
2 )

of matrix of influence (functions of influence), Green's functions

QS (t.z.r, 0.2, 5)——2 KK (t=7,1,0,2=E) 04 (2, 9. EW i (),
%o m=0
components
Jr wtreaz)= a1R00'1<a11) Eu(t,r,Ry,0.2,2)

of left radial Green’s matrix (left radial Green s functions) and components

2 2 1
er’ik (t.r,p,a,z2)=a;,,Ro, 4 (a22+ ) i n+1('[, rnR,pa,z)

of right radial Green’s matrix (right radial Green's functions) of corre-
sponding initial-boundary problems of conjugation, here

mlk 20 Vj(r!/ls)vk(pvﬂ“s)
(t.,r.p.2)=> | N(t, 4, 0)cos(cz)do
%1 GEN

Let’s analyze formulas (38) depending on the type of boundary con-
ditions on the wedge boundaries of an unbounded piecewise homogeneous
wedge-shaped hollow cylinder. Let’s consider, for example, the case of
boundary conditions (6). In this case, Green's functions

Q7,1 p,0,2,8) =— ZKmlz(t—z’,l’,p,Z—§)x
¢’0m1

z(2m+1) . r(2m+1)
x| =05, (7, 0. E) + ()" W, (7, 0, &) sin TP
20, 20y
Let’s determine the tangential Green's functions generated by bound-
ary conditions (6) by the formulas:
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. 2m+1
W2 (tr,rp.0,2,6)=— z(2m+1)Km12(t—z,r,p,z-g)sm—”( +)¢’,
(ﬂo m=1 Po
2 2 2m+1
le‘iz(t,r,r,p,w,z,é)=—Z(—l)m+l mlz(t—r r,pz- §)S|nu.
7Po m=1 Po

Then the solution of the problem of conjugation (1)-(4), (6), (9) we
can write in the form

n+lt Ry @y +o0

le(t r, (pvz)_ZI j j I E f,r,p,¢,a,z—§)fp(r,p,a,§)x
P=10R,,

n+l RP Py +o0

xo ,pdédad pdr+ ) j IjE}s(t,r,p,¢,a,z—§)gp(p,a,§)x
leRHofoo

n+1 t Ry 4o

xappdcfdaderZa;pIJ' f[lepz,l(t,f,f,p,(ﬂ,Z,é)gzp(r,p,§)+
p=1 0R,, -
W2, (7,7, 0,0,2, )Wy, (7,0, )]0, p D Ed pll 7 +

t @y +0

+II .[[lervlz(t_f’r-‘/”a’z—f)go(r,a,éﬂ

00 -
+Wj2r’12(t—r,r,go,a,Z—é)g(r,a,é‘)}dﬁdadr; j=Ln+l
Using a properties of functions of influence E}S t,r,p,0,a,z) and
Green's functions W% (t,z,r,p,0,2,¢), (s=12), W}, (t.r.0a,2),

(k =1,2) we can verify that functions uj ,(t,r,¢,z) which are defined by

formulas (39), satisfy the equation (1), the initial conditions (2), the
boundary conditions (3), (4), (6) and conjugate conditions (9) in the sense
of theory of generalized functions [23].

The uniqueness of the solution (39) follows from its structure (inte-
gral image) and from uniqueness of the main solutions (functions of influ-
ence and Green’s functions) of parabolic initial-boundary value problem
of conjugation (1)-(4), (6), (9).

By methods from [1, 23] can be proved that under appropriate condi-
tions on the initial data, formulas (39) define a limited classical solution of
the concidered problem (1)-(4), (6), (9).

We get the following theorem as the summary of the above results.

Theorem. If functions fitt,rip,z), 9;(r.ez), g,(tr,z2),
W, (t,r,z), (j=1n+1) satisfy conditions:
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1) are continuously differentiated by variable t and continuously differ-
entiated twice by the geometric variables;

2) have a limited variation for the geometric variables;

3) are absolutely summable with the variable z in (—o0;+0) ;

4) conjugate conditions are true and functions g, (t,¢,z), g(t,p,z) also

satisfy the conditions 1)-3), then the parabolic initial-boundary value
problem of conjugation (1)-(4), (6), (9) has a single bounded classical
solution, which is determined by formulas (39).
Cases of boundary conditions (5), (7) or (8) on the wedge boundaries
p =0, ¢ =g, we can analyze similarly.

Remark 1. In the case of a; =a,; =a, =a; >0 formulas (38) de-

fine the structures of the solutions of considered problems in an isotropic
unlimited piecewise homogeneous wedge-shaped hollow cylinder.

Remark 2. The case of changing ¢ within ¢, < ¢ < ¢, is reduced to
the considered replacement ¢’ =p—¢, (9, =0, —¢,).

n+1

Remark 3. Parameters ), A5 ab', pa," allow to allocate from
formulas (38) the solutions of initial boundary value problems of conjuga-
tion in the case of boundary conditions of the 1st kind, 2nd kind and 3rd
kind and their possible combinations on the radial surfaces r =R,, r=R.

Remark 4. Analysis of the solution (38) is done directly from the
general structures according to the analytical expression of functions

fi(t.re.2), 9;(re.2), g4trz), wtrz), j=ln+l k=14,

9(t.e.2), 9t.0.2).

Conclusions. By means of method of classical integral and hybrid inte-
gral transforms and with the method of principal solutions (influence functions
and Green’s functions) exact analytical solutions of parabolic boundary-value
problems in unlimited piecewise homogeneous wedge-shaped hollow cylinder
are obtained at first time. The obtained integrated images of solutions are of
algorithmic character, continuously depend on the parameters and data of the
problem and can be used both in further theoretical research and in the practice
of engineering calculations of mathematical models of evolutionary processes
in piecewise homogeneous environments.
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Cepig: ®ismko-maTemaTnyHi Hayku. Bunyck 21

NAPABOJIYHI KPANOBI 3A0AYI B HEOBEMEXEHOMY
KYCKOBO-OOHOPIOHOMY KITMHOBUOHOMY
NMOPOXHUCTOMY LIMNIHAPI

VY IporoHoBaHiH CTAaTTi METOIOM KJIACHYHHX IHTErpajbHUX 1 TOpHIHHUX
IHTErpaJbHAX MepeTBOPEHb Y TIOETHAHHI 3 METOIOM T'OJIOBHUX PO3B’SI3KIB (Ma-
TPHIH BIUIMBY Ta MaTpHIlb [ piHa) Briepiie noOyIoBaHO €IMHI TOUHI aHAJIITHI-
Hi PO3B'A3KH MapabOIiYHIX KPaHOBHX 3a/1ad MATeMaTHYHOI (i3UKH B HEOOMe-
JKEHOMY 32 3MIHHOIO Z KyCKOBO-OJJHOPITHOMY 32 PalialbHOIO 3MIHHOIO I' KJTH-
HOBHIHOMY 32 KyTOBOIO 3MiHHOIO ¢ IOPOKHUCTOMY LIJTIHAPI.

PosrnsHyTO BUNagKHM 3agaHHS Ha TpaHAX KiIMHA KpaioBux ymoB Hipi-
xne i1 Heiimana Tta ix MmoximBux komoOiHamii ([lipixme — Heiimana,
Hetimana — [ipixue).

Jnst moOynoBM KIIACHYHUX PO3B'A3KIB JIOCHIIKYBAaHUX IT0YaTKOBO-
KpaloBHX 3aJ]a4d 3aCTOCOBAHO CKiHUEHHE IHTerpaibHe repeTBopeHHs Dy-
p'e MO0 KyTOBOi 3MiHHO{, iIHTeTpallbHE TIepeTBOpeHHsT Pyp'e Ha AeKapTO-
Bilf OCi MO0 aruTiKaTHOI 3MiHHOT Ta TiOpUAHE iHTerpajbHEe IEPETBOPEHHS
tuny ['aHkens 2-To pooy Ha CErMEHTI MOISPHOT OCi 3 N TOUKAMH CHPSIKCH-
HS IOJ0 paJialbHOI 3MiHHOI.

IMocnimoBHe 3acTOCYBaHHS IHTErPaJbHUX MEPETBOPEHb 32 TEOMETPHY-
HUMH 3MIHHUMH JO3BOJISIE 3BECTU TPHBUMIPHI IIOYaTKOBO-KpaloBi 3a1adi
cnpspkeHHs 10 3amadi Komni s 3BUYaitHOTO JiHIMHOTO HEOJHOPITHOTO
I epeHIiaTbHOTO PIBHSIHHS 1-T0 HOPSAKY, €XMHUNA PO3B'SI30K K0T BUIH-
CaHO B 3aMKHYTOMY BUIJISIAI.

3acrocyBaHHSI OOCpHEHHX IHTETPAlbHUX IEPETBOPEHb BiAHOBIIOE B
SIBHOMY BT PO3B'SI3KM PO3TIITHYTHX 3a7ad depe3 iX iHTerpajbHe 30-
OpakeHHS.

KiouoBi ciioBa: napaboniune pieHanHs, noyamkosi ma Kpaosi ymo-
68U, YMOBU CNPAICEHHS, THMESPANbHI NEPemeopenHs, 2i0OpUOHI iHmespanrbHi
nepemeopeHHsl, 20106HI p036 A3K.
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