УДК 519.6

І. В. Нефьодова, ст. викладач
Українська інженерно-педагогічна академія, м. Харків

ПРО ОПТИМАЛЬНИЙ ВИБІР ПРЯМИХ ІНТЕРЛІНАЦІЙ
В МЕТОДІ ЛІДР НАБЛИЖЕНОГО РОЗВ’ЯЗКУ КРАЙОВОЇ
ЗАДАЧІ ЕЛІПТИЧНОГО ТИПУ В ПРЯМОКУТНІЙ ОБЛАСТІ

У роботі пропонується метод оптимального вибору ліній
інтерлінації $x = x_k, (k = 1, m)$, $y = y_l, (l = 1, n)$ в методі ЛІДР (ме-
tоді розв’язання дво-вимірних крайових задач шляхом зве-
дення їх до систем лінійних інтерг-диференціальних рівнянь).

Ключові слова: дво-вимірна крайова задача, поліноми Че-
бишова 1-го роду, інтерлінація функцій двох змінних, метод
ЛІДР.

Питання вибору вузлів інтерполації при наближенні диференці-
йованих функцій алгебраїчними інтерполаційними поліномами є од-
ним з ключових питань теорії наближення. Це ж стосується і вибору
ліній інтерлінації при наближенні функцій двох і більше змінних
операторами поліноміальної інтерлінації. Щодо оптимального вибору
ліній інтерлінації при наближенні диференційованих розв’язків крайо-
вих задач, то тут авторам невідомі твердження аналогічні тверджен-
ням П. Л. Чебишова. Тому актуальною є задача знаходження наближ-
жених розв’язків дво-вимірних крайових задач методом ЛІДР з вико-
ристанням найкращого вибору ліній інтерлінації.

Метод ЛІДР, запропонований в працях О.М. Литвина (див. біб-
ліографію [1, с. 528–530]), допускає вибір ліній інтерлінації не дові-
льним чином, а з умови найкращого наближення формулі інтерлінації
dо точного розв’язку. Автору роботи невідомі твердження інших авторів,
присвячені методам вибору ліній інтерлінації. У ро-
боті [2] для найкращого наближення функцій в нормі $L_1 [-1,1]^2$ запро-
поновано використовувати оператори інтерлінації на лініях, які є вузлами
поліномів Чебишова 2-го роду (по x і по y) [3, с. 90–97]. У роботі цю ідею пропонується застосувати в методі ЛІДР.

Метою даної роботи є побудова і дослідження алгоритму методу
ЛІДР з оптимальним вибором ліній інтерлінації.

Наближений розв’язок крайової задачі

$Lu(x, y) = f(x, y), \ (x, y) \in G$, \ \ \ (1)$
$u(x, y) = 0, (x, y) \in \partial G$, \ \ \ (2)

© І. В. Нефьодова, 2010
Математичне та комп'ютерне моделювання

\[Lu(x, y) = -\frac{\partial}{\partial x} \left(a(x, y) \frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial y} \left(b(x, y) \frac{\partial u}{\partial y} \right) + c(x, y) u, \]

\[G = \{ |x| < 1, |y| < 1 \}, \quad \partial G = \{(x, y) : x = \pm 1, -1 \leq y \leq 1; y = \pm 1, -1 < x < 1 \} \]

будемо знаходити методом зведення до системи лінійних інтегро-диференціальних рівнянь (ЛІДР) у вигляді формул

\[w(x, y) = \sum_{k=1}^{m-1} h_1(x) \phi_k(y) + \sum_{l=1}^{n-1} h_2(y) \psi_l(x) - \sum_{k=1}^{m-1} \sum_{l=1}^{n-1} w_{k,l} h_1(x) h_2(y), \]

де \(h_1(x) = h_1(x, X) = \prod_{i=1, i \neq k}^{m-1} \frac{x - X_i}{X_k - X_i} \), \(h_2(y) = h_2(y, Y) = \prod_{j=1, j \neq l}^{n-1} \frac{y - Y_j}{Y_k - Y_i} \),

\[X = [X_1, \ldots, X_{m-1}], \quad Y = [Y_1, \ldots, Y_{n-1}] \], функції \(\phi_k(y), \quad (k = 1, m-1) \) та \(\psi_l(x), \quad (l = 1, n-1) \) і сталі \(w_{k,l} \) \((k = 1, m-1; l = 1, n-1) \) є невідомими з властивостями

\[\psi_l(x_k) = \phi_k(y_l) = w_{k,l}, \]

\[\psi_l(-1) = 0, \quad \psi_l(1) = 0, \quad \phi_k(-1) = 0, \quad \phi_k(1) = 0, \quad (k = 1, m-1; l = 1, n-1), \]

які знаходяться з умови мінімуму функціоналу, відповідного поставленій крайовій задачі.

Згідно з теоремами про наближення диференційовних функцій операторами поліноміальної інтерлінації [1, с. 157–163] похибка \(R(x, y) = u(x, y) - w(x, y) \) визначається формулою [1, с. 160]

\[R(x, y) = u^{(m,n)}(\xi, \eta) \frac{\prod_{i=0}^{m} (x - X_i) \prod_{j=0}^{n} (y - Y_j)}{(m+1)! (n+1)!}, \]

\[X_0 = 0 < \xi < 1 = X_m, \quad Y_0 = 0 < \eta < 1 = Y_n, \]

tобто \(|R(x, y)| \) для заданої функції \(u(x, y) \) буде найменшим при такому виборі прямих інтерлінації, при яких функція

\[\frac{\prod_{i=0}^{m} |x - X_i| \prod_{j=0}^{n} |y - Y_j|}{(m+1)! (n+1)!} \]

буде мінімальною для \(|x| \leq 1, \quad |y| \leq 1 \).
Згідно леми Cea [4, с. 109] таке твердження повинно бути справедливим також для наближеного розв’язку, отриманого методом ЛІДР. Тобто, в даній задачі прямі інтерполяції повинні проходити через точки-нули поліномів, які є аналогами поліномів Чебишова 1-го роду, які повинні дорівнювати нулю також в точках \(x = \pm 1 \).

Для знаходження невідомих функцій \(\varphi_k(x), (k = 1, m-1) \) та \(\psi_l(x), (l = 1, n-1) \) і сталих \(w_{k,l} (k = 1, m-1; l = 1, n-1) \) запишемо системи

\[
\int_{-1}^{1} \left(Lw(x,y) - f(x,y) \right) h_{1_k}(x) dx = 0, \quad k = 1, m-1,
\]

(7)

\[
\int_{-1}^{1} \left(Lw(x,y) - f(x,y) \right) h_{2_l}(y) dy = 0, \quad l = 1, n-1,
\]

(8)

\[
\int_{-1}^{1} \int_{-1}^{1} \left(Lw(x,y) - f(x,y) \right) h_{1_k}(x) h_{2_l}(y) dxdy = 0, \quad k = 1, m-1, \quad l = 1, n-1.
\]

(9)

Ці системи треба розв’язувати сумісно з системою граничних умов (5), які витікають із граничної умови (2), а також з врахуванням умов (4).

Питання вибору вузлів полінома

\[q(x) = q(x, X) = \left| (x+1) \cdot \prod_{k=1}^{m-1} (x-X_k) \cdot (x-1) \right|, \]

який на кінцях інтервалу \([-1,1]\) дорівнює нулю \(q(\pm 1) = 0 \), з умови найменшого відхилення від нуля

\[\max_{-1 \leq x \leq 1} q(x, X) \rightarrow \min, \quad -1 = X_0 < X_1 < X_2 < \ldots < X_{m-1} < X_m = 1 \]

пропонується розв’язувати для кожного \(m \) за допомогою чисельних методів.

Наприклад, при \(m = 4 \) маємо вузли \(-1, -0.6177, 0, 0.6177, 1\); при \(m = 6 \) маємо вузли \(-1, -0.7851, -0.3468, 0, 0.3472, 0.7852, 1\); при \(m = 8 \) маємо вузли \(-1, -0.8566, -0.5262, -0.2523, 0, 0.2523, 0.5262, 0.8566, 1\); при \(m = 10 \) маємо вузли \(-1, -0.8978, -0.6557, -0.4105, -0.2011, 0, 0.2011, 0.4105, 0.6557, 0.8978, 1\).

Написані вище твердження є справедливими також для функції змінної \(y \)

\[g(y) = g(y, Y) = \left| (y+1) \cdot \prod_{l=1}^{n-1} (y-Y_l) \cdot (y-1) \right|. \]

Підставляючи ці вузли при заданих \(m \) та \(n \) і використовуючи схему методу ЛІДР, описаного в [5, стор. 117–121], отримаємо наближений розв’язок знайдений з оптимальним вибором ліній інтерполяції.
Зупинимось на деяких аспектах чисельної реалізації цього методу на прикладі задачі (1)–(2) при \(a(x, y) = b(x, y) = 1, \ c(x, y) = 0, \ f(x, y) = -2, \ m = n = 4 \).

Враховуючи симетрію точного розв’язку, отримаємо в структурі наближеного розв’язку (3) всього дві невідомі функції \(\varphi_1 (t) \equiv \varphi_3 (t) \equiv \psi_1 (t) \equiv \psi_3 (t) \), \(-1 \leq t \leq 1\), \(\varphi_2 (t) \equiv \psi_2 (t) \), \(-1 \leq t \leq 1\), які повинні задовольняти умовам

\[
\begin{align*}
\varphi_1 (\pm 1) & = 0, \varphi_2 (\pm 1) = 0, \varphi_1 (x_1) = \varphi_1 (x_3) = w_{11} = w_{13} = w_{31} = w_{33}, \\
\varphi_1 (x_2) & = \varphi_2 (x_1) = \varphi_2 (x_3) = w_{12} = w_{21} = w_{23} = w_{32}, \varphi_2 (x_2) = w_{22},
\end{align*}
\]

та три невідомі сталі \(w_{11}, w_{12}, w_{22} \). Для спрощення покладемо \(h(x) = h1(x) = h2(x), h(y) = h1(y) = h2(y) \).

Тобто наближений розв’язок буде мати вигляд

\[
w(x, y) = \left[h_1(x) + h_3(x) \right] \varphi_1(y) + \left[h_1(y) + h_3(y) \right] \varphi_1(x) + h_2(x) \varphi_2(y) + \\
\left. + h_2(y) \varphi_2(x) - w_{1,1} \left[h_1(x)h_1(y) + h_3(x)h_1(y) + h_1(x)h_3(y) + h_3(x)h_3(y) \right] \right. \\
\left. - w_{1,2} \left[h_2(x)h_1(y) + h_1(x)h_2(y) + h_3(x)h_2(y) + h_2(x)h_3(y) \right] - w_{2,2} h_2(x)h_2(y). \right.
\]

Введемо позначення \(\Phi_1 (y) = h_1(y) + h_3(y), \Phi_2 (x) = h_1(x) + h_3(x), \Phi_3 (x, y) = h_1(x)h_1(y) + h_3(x)h_1(y) + h_1(x)h_3(y) + h_3(x)h_3(y), \Phi_4 (x, y) = h_2(x)h_1(y) + h_1(x)h_2(y) + h_3(x)h_2(y) + h_2(x)h_3(y), \) тоді наближений розв’язок може бути представлений у вигляді

\[
w(x, y) = \varphi_1 (x) \Phi_1 (y) + \varphi_2 (x) \Phi_2 (y) + \varphi_1 (y) \Phi_3 (x, y) + \varphi_2 (y) \Phi_4 (x, y) - \\
w_{1,1} \Phi_3 (x, y) - w_{1,2} \Phi_4 (x, y) - w_{2,2} h_2(x)h_2(y).
\]

Систему інтегро-диференціальних рівнянь для знаходження функцій \(\varphi_1 (t), \varphi_2 (t) \) отримуємо прирівнюючи до нуля варіації функціоналу

\[
J(\varphi_1, \varphi_2, \varphi_2') = \frac{1}{2} \int_{-1}^{1} \int_{-1}^{1} \left(\frac{\partial w}{\partial x} \right)^2 + \left(\frac{\partial w}{\partial y} \right)^2 + 4w \right) dxdy
\]

за функціями \(\varphi_1, \varphi_2 : \)

\[
\delta_{\varphi_1} (J(\varphi_1, \varphi_1', \varphi_2, \varphi_2')) = 0, \delta_{\varphi_2} (J(\varphi_1, \varphi_1', \varphi_2, \varphi_2')) = 0,
\]

що приводить до наступних рівнянь Ейлера:

\[
\begin{align*}
\frac{\partial}{\partial x} \left(\frac{\partial F}{\partial \varphi_1'} \right) - \frac{\partial F}{\partial \varphi_1} &= 0, \\
\frac{\partial}{\partial x} \left(\frac{\partial F}{\partial \varphi_2'} \right) - \frac{\partial F}{\partial \varphi_2} &= 0,
\end{align*}
\]
де \(F(x, \varphi_1(x), \varphi'_1(x)) = \int_{-1}^{1} \left[\left(\frac{\partial w}{\partial x} \right)^2 + \left(\frac{\partial w}{\partial y} \right)^2 + 4w \right] dy. \)

Система складається з наступних рівнянь

\[
\phi''_1(x) \int_{-1}^{1} \Phi_1^2(y) dy + \Phi''_2(x) \int_{-1}^{1} \Phi_1(y) \varphi_1(y) dy + \\
+ \phi''_1(x) \int_{-1}^{1} \Phi_1(y) h_2(y) dy + h''_2(x) \int_{-1}^{1} \Phi_1(y) \varphi_2(y) dy - \\
- w_{11} \int_{-1}^{1} \Phi''_{3,xx}(x, y) \Phi_1(y) dy - w_{12} \int_{-1}^{1} \Phi''_{4,xx}(x, y) \Phi_1(y) dy - \\
- w_{22} h''_2(x) \int_{-1}^{1} h_2(y) \Phi_1(y) dy - 2 \int_{-1}^{1} \Phi_1(y) dy = 0, \\
\phi''_1(x) \int_{-1}^{1} \Phi_1(y) h_2(y) dy + \Phi''_2(x) \int_{-1}^{1} h_2(y) \varphi_1(y) dy + \\
+ \phi''_2(x) \int_{-1}^{1} h''_2(y) dy + h''_2(x) \int_{-1}^{1} h_2(y) \varphi_2(y) dy - \\
- w_{11} \int_{-1}^{1} \Phi''_{3,xx}(x, y) h_2(y) dy - w_{12} \int_{-1}^{1} \Phi''_{4,xx}(x, y) h_2(y) dy - \\
- w_{22} h''_2(x) \int_{-1}^{1} h_2^2(y) dy - 2 \int_{-1}^{1} h_2(y) dy = 0.
\]

Ці рівняння повинні розв`язуватись при умовах (10), а також сумісно з рівняннями

\[
\begin{align*}
\frac{\partial J}{\partial w_{11}} &= 0, \\
\frac{\partial J}{\partial w_{12}} &= 0, \\
\frac{\partial J}{\partial w_{22}} &= 0.
\end{align*}
\]

Звертаємо увагу, що кожне рівняння системи (11)–(12) є лінійним диференціальним рівнянням 2-go порядку з коефіцієнтами, деякі з яких є інтегралами, що залежать від невідомих функцій, наприклад

\[A1 = \int_{-1}^{1} \Phi_1(y) \varphi_1(y) dy, \quad A2 = \int_{-1}^{1} \Phi_1(y) \varphi_2(y) dy, \quad \ldots \]

Тобто ця система
двог рівнянь є системою інтегро-диференціальних рівнянь. Тому загальний розв'язок цих інтегро-диференціальних рівнянь буде залежати від цих параметрів та довільних сталих, які повинні знаходитись шляхом задоволення граничним умовам, підстановки цих формул в систему (13) і у формулі для $A_1, A_2, ...$

Висновок. У роботі запропонована нова схема методу ЛІДР для розв'язання двовимірних крайових задач з використанням поліноміальної інтерлінації з оптимальним вибором ліній інтерлінації. В подальшому автор планує розробити пакет програм для розв'язання крайових задач запропонованим методом.

Автор висловлює подяку д-ру фіз.-мат. наук, професору Литвину О.М. за постановку задачі та допомогу.

Список використаних джерел:

The method of optimum choice of lines of interlineation $x = x_k, \{k = 1, m\}, \ y = y_l, \{l = 1, n\}$ is offered in this work in the method of LIDE (method of solution of two-dimensional boundary value problem by reducing to linear integro-differential equations systems).

Key words: two-dimensional boundary value problem, polynomials of Chebyshev of 1-th kinds, interlineation functions two variables, method of LIDE.

Отримано 28.05.10