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АСИМПТОТИКА РОЗВ’ЯЗКУ БАГАТОВИМІРНОГО  
РІВНЯННЯ ВІДНОВЛЕННЯ В МАТРИЧНІЙ ФОРМІ 

У статті досліджуються багатовимірні рівняння відновлен-
ня, що становлять важливий клас інтегральних рівнянь, 
пов’язаних із стохастичними процесами з моментами віднов-
лення. Такі рівняння природно виникають у теорії випадкових 
еволюцій, марковських і напівмарковських процесів, а також у 
моделюванні систем, які періодично повертаються до почат-
кового стану. Особливу увагу приділено випадку, коли рів-
няння подано в матричній формі, що дозволяє узагальнити 
класичні скалярні співвідношення на системи рівнянь, придат-
ні для опису багатокомпонентних процесів. 

Розглянуто рівняння відновлення з нелінійним нормуючим 
множником, який ускладнює аналітичне дослідження, проте 
робить модель більш гнучкою та близькою до реальних прик-
ладних задач. Для отримання розв’язку застосовано метод пе-
ретворення Лапласа, що дало змогу перейти від інтегрального 
рівняння до алгебраїчної матричної форми, придатної для по-
дальшого аналізу. Отримано явний вираз для перетворення 
Лапласа розв’язку рівняння відновлення, що є ключовим кро-
ком для подальшого відновлення часової залежності розв’язку. 

Крім теоретичного аналізу, у статті наведено приклад для 
конкретної функції відновлення, який ілюструє ефективність 
застосованого підходу. Розраховано основні характеристики 
розв’язку та проаналізовано вплив параметрів функції віднов-
лення на поведінку системи. Отримані результати можуть бу-
ти використані при дослідженні стохастичних систем, що до-
пускають структуру відновлення, а також у задачах приклад-
ної ймовірності, теорії надійності та моделюванні складних 
процесів з багатовимірною динамікою. 

Ключові слова: рівняння відновлення, множник нормування, 
перетворення Лапласа, випадкова еволюція, функція відновлення. 

Вступ. Рівняння відновлення займають важливе місце в теорії 
випадкових процесів і математичній статистиці. Вони виникають у 
дослідженні систем, що після випадкових проміжків часу поверта-
ються до певного вихідного стану, утворюючи так звані моменти від-
новлення. Такі рівняння дозволяють описати широкий спектр явищ у 
прикладних галузях – від теорії надійності технічних систем до біо-
логічних і економічних процесів, що мають стохастичну природу. 
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Класичні результати, отримані в межах скалярних рівнянь від-
новлення, дають можливість ефективно досліджувати поведінку од-
нотипних процесів. Проте у багатьох реальних задачах виникає необ-
хідність опису багатовимірних або багатокомпонентних систем, у 
яких динаміка кожного компонента залежить від інших. Це зумовлює 
потребу у вивченні рівнянь відновлення в матричній формі, які є 
природним узагальненням одновимірного випадку. 

Додаткову складність становить наявність нелінійного нормую-
чого множника, що зумовлює зміну масштабу або структури віднов-
лення залежно від поточного стану системи. Такі рівняння виходять 
за межі лінійної теорії і потребують спеціальних методів аналізу. Од-
ним із найбільш ефективних підходів до дослідження рівнянь цього 
типу є застосування перетворення Лапласа, яке дозволяє перейти від 
інтегральної до алгебраїчної постановки задачі та отримати вирази 
для перетворень шуканих функцій. 

Метою роботи є дослідження багатовимірних рівнянь віднов-
лення з нелінійним нормуючим множником, поданих у матричній 
формі, а також знаходження перетворення Лапласа для їх розв’язків.  

Виклад основного матеріалу. Розглянемо багатовимірне рів-
няння відновлення в матричній формі  

( ) ( ) ( )X t A t F X t     , 

де ( )X t  – сім’я шуканих матричнозначних функцій, ( )A t  – сім’я 

заданих невід’ємних матричнозначних функцій, ( )F dt  – сім’я мат-

ричнозначних скінченних невід’ємних мір на [0; ).   

Функція ( )F dt  може бути представлена в наступному вигляді 

2
1 2( ) ( ) ... ( ) ( ( )),n

n nF F g B g B g B o g           

де 1 2, ,..., nB B B  – матриці, 1( ) 0,..., ( ) 0,ng g    при 0.   

Нехай ( ),X t 0t   – напівмарковський процес зі скінченною 

множиною станів {1,2,..., }n  та неперервним часом. Позначимо 

1
0

inf{ : ( ) (0)}
t

t X t X


   – момент першого виходу з початкового ста-

ну, 2 1
0

inf{ : ( ) ( )}
t

t X t X 


   – момент другого виходу. Тоді 

1
0

inf{ : ( ) ( )}n n
t

t X t X  


   – момент n-го виходу. 

Розглянемо послідовність процесів з незалежними приростами 

( ),i t  1,2,..., .i n  Процеси ( )X t  та ( )i t  – незалежні. Крім цього, 

незалежні копії процесу з незалежними приростами ( ) ( ),n
i t  

1,2,...., ,n    1,2,...,i m  не залежать від процесу ( )X t . 
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Побудуємо випадкову еволюцію 
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Згідно з побудовою, ( )t  – процес з незалежними приростами. 

Нехай ( ),f t 0,t  - додатна скінченна функція і ( )i t  – додатно 

визначений випадковий процес. Тоді ( ( ))f t  – додатно визначена 

функція. 

Розглянемо наступний інтегральний процес 

0

( ) ( ( )) .

t

t f u du    

Згідно з припущеннями, ( )t  – процес з незалежними приростами. 

Також, припустимо, що 

1 ( ) ( ),a
i iF t t a L t  

де ( )L t  – повільно змінна функція, 0 1a   і 1.ia   

Тоді середній час перебування в деякому фіксованому стані i , 

при умові, що (0)X i  є нескінченним. Крім цього, ,iE    де iE  – 

умовне математичне сподівання при умові (0)X i .Припустимо, що  

0

1
( ( )) ( )

t

i if u du b t
t

   

за ймовірністю. 

Розглянемо поведінку даного процесу. Для початку запишемо 

перетворення Лапласа для рівняння відновлення 
( )( , ) ( ).s t

i is t E e    

Далі, розглянемо наступне співвідношення 
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 
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В результаті отримаємо перетворення Лапласа багатовимірного 
рівняння відновлення 

1

0 0

( ) ( )

1

1 0

( , ) ( ) ( ) ( ) ( ) ( , ).

t

i i
tms u du s u du

i i i i ij j
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В результаті отримано наступну теорему. 

Теорема 1. Нехай 

0

( ) ( ( )) .

t

t f u du    Тоді перетворення Лап-

ласа для багатовимірного рівняння відновлення має наступний вигляд 
1

0 0
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Розглянемо багатовимірне рівняння відновлення  
( )( )
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( ) ( ) { | (0) }

( ( )) ( ) ( ).
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Нехай виконуються наступні умови 

1. ( )0 ( ) ( ) .u
i ijE e p du

     

2. ( )( ) ( )u
i ijE e p du

 
 – нерозкладна матриця. 

3. Має місце слабка збіжність  
( ) ( )( ) ( ) ( ) ( ).u u

i ij i ijE e p du E e p du
     

4. ( )( ) ( )u
i ijE e p du

 – блочно розкладна матриця. 

5. ( )( ) ( )u
i ijE e p du

 – рівномірно інтегровна. 

Тоді має місце наступна теорема. 

Теорема 2. Нехай 
( )( ) ( )u

i ijE e p du
 

 – негратчаста матриця і 

виконуються умови 1-5. Тоді існує матриця С та нелінійний нормуючий 

множник ( ) 0g    при 0   такі, що для кожного si E  та kj E  

( )

0
lim ; ( ) ,

( ) ( )

k
j

ij sk
k

pt t
H u u q t

g g



   

 
    

 
 

де ,tC
sk

sk
q e 

 
 ( )

, 0
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k
k i ij

i j E

p tF dt
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

    ;
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H u

g g


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 
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 
 – фу-

нкція відновлення на інтервалі ; .
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Розглянемо приклад. 

Нехай  

1 1 2 2( ) ( ) ... ( ) ( ( )),n n nF F g B g B g B o g           

де  

1 1
0

2 2

1 1
0

2 2

0 0 1

F

 
 
 
 
 
 
 
 
 

, 

1 2 1

1 3 3

2 2 3

1 1
4 ( ) ( ) 2 ( )

2 2

1 1
2 ( ) ( ) ( )

2 2

( ) ( ) 1 ( )

g g g

F g g g

g g g



  

  

  

 
  

 
   
 
 

 
 
 

. 

Крім цього, 2 1( ) ( ( )),g o g   3 2( ) ( ( ))g o g   і 1( ) 0g    при 

0.   

Матриця F є блочно-розкладною, де 

1

1 1

2 2

1 1

2 2

F

 
 

  
 
 
 

 і 2 1.F   

Власний вектор матриці F 

1

1 1
;

2 2
p

 
  
 

. 

Запишемо матрицю В 

4 0 2

2 0 0

0 0 0

B

 
 

  
 
 

. 

Тоді 

1
11

4 0 11 1
3 0.

2 0 12 2
b

    
         

     
 

Припустимо, що s  – відомий. 

Тоді  
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1

3 ( )

1 1

,
( ) ( )

tC k
j

ij ij
k
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pt t
H a H e

g g



  

    
       
      

 

де 1( ) 0.g    

Наступним кроком, потрібно знайти матрицю tCe , де 
1

3
.C С


   

Позаяк 

1
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21 1
1

02 2
b

  
    
   

 

і 

 1
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1
1 0 0 0,

1
b
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    

 
 

то  
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1
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С
 
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           

 

 

Власні значення матриці дорівнюють -3 та 0. 

Тоді, жорданова форма має набуває наступного вигляду 

1

3 01
.

0 0
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Також, 
1,J SCS  

де  
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3 1
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S

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Таким чином 
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3 33
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В результаті отримаємо наступні співвідношення 

1

3

1 1 1

,
( ) ( ) 2

t

ij ij

t t a
H a H e

g g



  

   
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де 1, ,i j E 1( ) 0,g    
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де 1, ,i j E 1( ) 0,g    
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   
     
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де 1, ,i j E 1( ) 0,g    

33 33
1 1 2

1
,
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t t
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Таким чином, знайдено функції відновлення в нелінійній апрок-

симації. 

У результаті проведеного дослідження, знайдено розв’язок бага-

товимірного рівняння відновлення в нелінійній апроксимації та розг-

лянуто приклад. 

У подальшому виникає потреба в дослідженні інших властивос-

тей розв’язку багатовимірного рівняння відновлення. Крім цього, слід 

розглянути рівняння відновлення в різних апроксимаціях. 

Висновки. У роботі досліджено багатовимірні рівняння віднов-

лення з нелінійним нормуючим множником у матричній формі. 

Отримано перетворення Лапласа для розв’язку рівняння, що дозволяє 

перейти від інтегральної до аналітичної постановки задачі.  

Наведено приклад для конкретної функції відновлення, який 

підтверджує ефективність методу. Результати можуть бути викорис-

тані для моделювання стохастичних систем із регенераційною струк-

турою та подальшого аналізу їхніх асимптотичних властивостей. 
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ASYMPTOTICS OF THE SOLUTION  
TO A MULTIDIMENSIONAL RENEWAL  

EQUATION IN MATRIX FORM 

The paper investigates multidimensional renewal equations, which repre-

sent an important class of integral equations associated with stochastic process-

es possessing renewal moments. Such equations naturally arise in the theory of 

random evolutions, Markov and semi-Markov processes, as well as in the 

modeling of systems that periodically return to their initial state. Particular at-

tention is given to the case where the equation is represented in matrix form, 

which makes it possible to generalize classical scalar relations to systems of 

equations suitable for describing multicomponent processes. 

A renewal equation with a nonlinear normalizing factor is considered. 

This factor complicates analytical analysis but makes the model more flex-

ible and closer to real-world applications. To obtain the solution, the La-

place transform method is applied, allowing the transition from the integral 

form of the renewal equation to an algebraic matrix representation suitable 

for further analysis. An explicit expression for the Laplace transform of the 

solution to the renewal equation is derived, which is a key step toward re-

covering the time-dependent behavior of the solution. 

In addition to the theoretical analysis, the paper presents an example 

for a specific renewal function illustrating the effectiveness of the proposed 

approach. The main characteristics of the solution are calculated, and the 

influence of the renewal function parameters on the system’s behavior is 

analyzed. The obtained results can be applied to the study of stochastic 

systems with a renewal structure, as well as in problems of applied proba-

bility, reliability theory, and modeling of complex processes with multidi-

mensional dynamics. 

Keywords: renewal equation, normalizing factor, Laplace transform, 

random evolution, renewal function. 
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