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НАЙКРАЩЕ НАБЛИЖЕННЯ КЛАСІВ ФУНКЦІЙ, 
ПОРОДЖЕНИХ СКЛАДЕНИМИ ЯДРАМИ 

Множина 2π-періодичних функцій, суттєвий супремум моду-

ля r-тих похідних яких не перевищує одиниці, є класом згорток 

ядра Бернуллі порядку r із елементами одиничної кулі простору 

сумовних суттєво обмежених 2π-періодичних функцій із середнім 

значенням на періоді рівним нулю. В 1936 р. Ж. Фавар знайшов 

точні значення найкращих наближень таких класів тригономет-

ричними многочленами порядку не вище за n – 1 в рівномірній 

метриці при кожному натуральному n. У подальших досліджен-

нях при відшуканні верхніх меж найкращих наближень класів 

згорток тригонометричними поліномами заданого порядку як в 

рівномірній так і в інтегральній метриках розглядались ядра Бер-

нуллі дробового порядку, узагальнені ядра Вейля-Надя, ядра Пуа-

ссона. У 1938 р. угорський математик Б. Надь запропонував дос-

татню умову для ядра згортки класу (це т. зв. умова Надя): існує 

тригонометричний многочлен порядку n – 1, який інтерполює яд-

ро в 2n рівномірно розташованих на періоді точках і лише в них із 

почережною зміною знаку різниці між ядром та цим многочле-

ном. Виконання цієї умови дозволяє обчислити найкраще набли-

ження ядра в інтегральній метриці, найкраще наближення класу 

згорток з цим ядром у рівномірній та інтегральній метриках. У 

1946 р. С. Нікольський узагальнив умову Надя. 

Завдяки результатам М. Крейна (1938 р.) в більшості випа-

дків не складно побудувати тригонометричний многочлен, 

який інтерполює ядро в 2n рівномірно розташованих на періо-

ді точках. Труднощі виникали при доведенні того факту, що 

більше точок інтерполяції немає. При дослідженні деяких ядер 

математики зіткнулися з тим фактом, що окрім «гарантова-

них» 2n точок інтерполяції можуть з’являтися «додаткові» то-

чки інтерполяції. Це спонукало авторів розглянути випадки 

ядер, для яких «стандартна» умова Надя не виконується. Один 

із кроків в цьому напрямку робиться в цій роботі. Знайдено 

деякі достатні умови для лінійних комбінацій парних ядер а 

також непарних ядер, які тригонометричними многочленами 

порядку n – 1 інтерполюються лише в 2n + 2 рівномірно роз-

ташованих на періоді точках для парного випадку та лише в 

2n + 1 рівномірно розташованій на періоді точці зі зміною зна-
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ку різниці між лінійною комбінацією та многочленом в точках 

інтерполяції. Тобто для цих випадків многочлени порядку n – 1 

забезпечують найкраще наближення так, якби це були много-

члени порядку n. Також у роботі наведені приклади різниць 

непарних ядер (Бернуллі, Бернуллі та Пуассона), різниці пар-

них ядер Бернуллі, які демонструють одержані в роботі теоре-

ми. Як наслідок, у роботі також знайдені величини найкращих 

наближень тригонометричними многочленами порядку n де-

яких класів згорток із такими лінійними комбінаціями непар-

них (парних) ядер, коли для них не виконується умова Надя 

порядку n, проте виконується ця умова на порядок вище. 

Ключові слова: найкраще наближення лінійних комбіна-

цій ядер, класи Степанця, достатня умова Надя. 

Вступ. У рівномірній метриці задача отримання точних значень 
найкращих наближень на класах 2 -періодичних функцій, r-ті 

 r N  похідні яких знаходяться в одиничній сфері простору сумов-

них суттєво обмежених функцій тригонометричними многочленами 
порядку не вище за n – 1, була розв’язана в 1936 р. Ж. Фаваром [1]. 
Такі класи можна розглядати також як класи згорток, що породжені 
відомими в науковій літературі з теорії наближення ядрами Бернуллі. 
В основі ідеї розв’язку задачі лежить теорема Ролля про співвідно-
шення між числом нулів функції та числом нулів її похідної. Остато-
чні результати по розв’язанню задачі знаходження точних значень 

величин найкращих наближень на класах 
rW , 0, ,r R   що поро-

джуються ядрами Вейля-Надя та які узагальнюють ядра Бернуллі, у 
метриках просторів неперервних і відповідно сумовних функцій, на-
лежать В. К. Дзядику [2]. При цьому В. К. Дзядик встановив вико-

нання умови Надя *
nN  для широкого класу ядер ( )K t , які записують-

ся у вигляді лінійної комбінації періодичних інтегралів від абсолютно 
монотонних функцій та які, як частковий випадок, містять ядра Вей-
ля-Надя при довільних значеннях параметрів 0r   і довільних дійс-

них .  Такі ж дослідження на різних функціональних компактах ус-

пішно здійснили видатні математики Н. І. Ахієзер та М. Г. Крейн [3], 
Б. Надь [4], С. М. Нікольський [5], С. Б. Стєчкін [6] та Сунь Юн-
шен [7, 8]. Ідея дослідження складених ядер, що записуються у ви-
гляді лінійної комбінації складових доданків належить О. І. Степан-
цю [9] і отримала відповідне втілення в задачах сумісного наближен-
ня функцій та їх похідних. У 80-90-х роках XX сторіччя О. І. Степан-
цем [10, глава ІІІ] був розроблений новий підхід до класифікації пері-
одичних функцій, який дозволив здійснювати досить тонку класифі-
кацію надзвичайно широких множин періодичних функцій. При цьо-
му отримані результати для вказаних класів з одного боку мають за-
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гальний характер, а з іншого – дають цілу низку нових, невідомих до 
цього часу, результатів, які на відомих раніше класах отримати було 
неможливо. Притримуючись підходів до вимог класифікації функцій, 
ми можемо розглядати лінійну комбінацію класів функцій як деякий 
один клас – більш складнішого характеру. І тоді задача знаходження 
точних значень верхніх граней найкращих наближень лінійних ком-
бінацій класів зводиться до задачі найкращого наближення одного 
класу, що відповідає згорткам з твірним складеним ядром, яке є від-
повідною лінійною комбінацією породжуючих ці класи ядер.  

У статті розглядається питання відшукання достатніх умов на 
лінійні комбінації парних та непарних ядер, виконання яких дозво-
лить обчислити точні значення величин найкращих наближень функ-
цій із класів, що подаються згортками з цими комбінаціями парних 
або непарних функцій.  

Результати даної статті стосуються запроваджених О. І. Степан-

цем класів  L C 

 
   та їх лінійних комбінацій. Зазначимо, що усі 

відомі до цього часу точні значення величин найкращих наближень 

на класах  L C 

 
  , де  0

1 1
: 1, 1U L        , 

(  0 : 1, 1U L   
      ) були одержані для класів, поро-

джених ядрами, що задовольняють умову Нікольського 
*
nA , або на-

віть більш жорстку ніж 
*
nA , умову Надя *

nN  Умови 
*
nA , та *

nN  (див., 

напр. [5]) можна означити так.  

Означення 1. Сумовна 2 -періодична функція ( )K t , яка то-

тожно не дорівнює нулю, задовольняє умову 
*
nA , n N , ( *

nK A ), 

якщо існують тригонометричний поліном *
1( )nT    степеня n – 1 і до-

датне число 
n


   такі, що для функції  1( ) ( ) ( )nt sign K t T t 

    

майже при всіх t виконується рівність ( ) ( )t t      . 

Означення 2. Сумовна 2 -періодична функція ( )K t , яка то-

тожно не дорівнює нулю, задовольняє умову *
nN , n N  ( *

nK N ), 

якщо існують тригонометричний поліном *
1( )nT    степеня n – 1 і то-

чка 0,n
n


 

 
  


 такі, що різниця 1( ) ( )nK t T t

  змінює знак на 

0, 2  у точках , 0,1,..., 2 1,k

k
t k n

n


     і тільки в них. 
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Зауважимо, що із виконання умови Надя випливає виконання 

умови Нікольського. 

Зокрема, для класичних класів, породжених ядрами Вейля-Надя, 

виконання умови Надя *
nN  і, як наслідок, знаходження точного значення 

величини найкращого наближення в рівномірній та інтегральній метри-

ках, встановлено В. К. Дзядиком [2]. Знаходження точного значення ве-

личин найкращих наближень окремих лінійних комбінацій функцій із 

класів Вейля-Надя в рівномірній та інтегральній метриках також деталь-

но досліджено в роботах авторів (див., зокрема, [11, 12]) з найкращого 

наближення функцій із класів, що задаються за допомогою згорток з 

фіксованими твірними ядрами. Величини найкращого наближення обчи-

слено також і в деяких інших важливих випадках (див., зокрема, [13-16]). 

Завдяки функції Крейна досить просто вдається побудувати три-

гонометричний многочлен, який інтерполює ядро ( )K t  в 2n рівномі-

рно розташованих на періоді точках. Труднощі виникають при дове-

денні того факту, що більше точок співпадання ядра та многочлена 
*

1( )nT t  не існує. Власне, всі роботи в даному напрямі присвячені по-

доланню цієї проблеми. Проте є такі ядра, для яких многочлен *
1( )nT t  

співпадає із ядром більше аніж в 2n  точках на періоді. Тому аналогі-

чно до виконання умови *
nN  запропонуємо таке означення. 

Означення 3. Сумовна 2 -періодична функція ( )K t , яка тотож-

но не дорівнює нулю, задовольняє умову , , ,n pN n N   0,1,...,p   

,( ),n pK N  якщо існують тригонометричний поліном *
1( )nT t  степеня 

n – 1 і точка 0,n
n p


 

 
  

 
 такі, що різниця 1( ) ( )nK t T t

  змінює 

знак на  0;2  у точках , 0,1,..., 2 2 1,k

k
t k n p

n p


    


 і лише в них.  

Зрозуміло, що ядро, яке задовольняє умову ,n pN , буде задовольня-

ти умову Надя n pN 
  при тригонометричному многочлені степеня n – 1. 

Узагальнена умова Надя та нові достатні умови, які отримали в 

статті для складених ядер, дають можливість: будувати оптимальні 

тригонометричні апроксимації для складних класів функцій; 

точно оцінювати похибку в задачах спектрального моделювання; по-

кращувати ефективність чисельних методів, що базуються на періо-

дичних розвиненнях; розробляти нові фільтри, згортки та інтерполя-

ційні схеми у прикладних алгоритмах. 
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Постановка задачі. Нехай ( )K t  – сумовна 2 -періодична фун-

кція, а – ( )с LM M  – клас згорток елементів   одиничної кулі 

0 0
1( )U U  з ядром ( )K t . 

Відомо, що відшукання величини найкращого наближення класу 

сM  тригонометричними многочленами 1( )nT    порядку n – 1 в рів-

номірній метриці в силу результатів роботи С. М. Нікольського [5, 

§6] зводиться до відшукання найкращого наближення ядра ( )K t  в 

інтегральній метриці тригонометричними многочленами 1( )nT    по-

рядку n – 1. А саме, у випадку виконання умови 
*
nA  для ядра згортки 

( )K t  виконуються рівності 

 

1

0
1

0
1 1

1

1

1 1

1 1 11 1

sup inf ( ) ( )

sup inf ( ) ( )

1
sup inf ( ) ( ) sup inf ( ) ( ) .

( )
n

C

n

n n
L

n C C n CTf

n n LСTU

n n n
T Tf U

E f T

K T E

f T K T E K















 







 
 

   

     

        


M

M

M

M  (1) 

Б. Надєм у 1938 році [4], були знайдені достатні умови того, що 

многочлен *
1( )nT t  забезпечує найкраще наближення ядра ( )K t  в ме-

триці L. А саме: 

1) якщо коефіцієнти парного ядра 
1

( ) cosc

k
k

L t a kt




  додатні числа і 

утворюють спадну до нуля послідовність, яка є тричі монотон-

ною, тобто 

 2 3
10, lim 0, 0, ( ) 0, 0, ,k k k k k k k k

k
a a a a a a a a k N


              

то функція ( )сL t  задовольняє умову *
nN , і тоді 

(2 1)

1

0

( 1)
( ) 4

2 1

k
k nс

n

k

a
E L

k










 ; 

2) якщо коефіцієнти непарного ядра 
1

( ) sins
k

k

L t b kt





 

додатні числа і 

утворюють спадну до нуля послідовність, яка є двічі монотонною: 

20, lim 0, 0, 0, ,k k k k
k

b b b b k N


        i 
1

,k

k

b

k





   то функція 

( )sL t  задовольняє умову *
nN , і тоді (2 1)

1

0

( ) 4
2 1

k ns
n

k

b
E L

k









 . 
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Зрозуміло, що сума ядер, які задовольняють умови 1) або 2), буде 

ядром, що задовольняє умову Надя *
nN . Цікавою є задача відшукання 

величини найкращого наближення в метриці L лінійної комбінації таких 
ядер, або ж принаймні різниці двох непарних (парних) ядер.  

Основні результати. Нехай ( ), 1, ,k i mi   – деякі послідовності 

дійсних чисел. У роботі авторів [16] для лінійної комбінації ( , )K t   

парних (непарних) ядер Бернуллі знайдені обмеження, при яких ядро 

( , )K t  задовольняє умову *
nN . Застосувавши схему дослідження цієї 

статті до ядер вигляду 

11 1

( , ) ( ) cos ( )
m m

c c
ii i i

ki i

K t k kt t   


 

   

1 1 1

( , ) ( )sin ( )
m m

s s
i i i i

i k i

K t k kt t   


  

 
   

 
   ,  

одержимо твердження. 

Теорема 1. Нехай сумовні 2 -періодичні функції ( )c
i t неперер-

вні на проміжку (0;2 ) . Якщо ядро ( , )cK t   інтерполюється три-

гонометричним многочленом порядку не вище n – 1 на періоді не бі-

льше як в 2n + 2 точках, многочлен *
1( )nT t  – інтерполює функцію 

( , )cK t   в нулях cosnt ,  

1( , ) ( , ) ( )c
n nt K t T t  

   , (0 0; ) ( ; ) ( 1)n
n nsign sign         , 

то ядро ( , )cK t   задовольняє умову Надя *
nN . 

Доведення. Якщо різниця * ( , )n t   перетворюється в нуль не бі-

льше як у 2n точках на періоді, то, враховуючи нулі функції cosnt  в 

яких відбувається інтерполяція ядра ( , )cK t   тригонометричним много-

членом *
1( )nT t , приходимо до висновку, що в умовах теореми кількість 

нулів різниці рівно 2n. І оскільки це різні точки, то дані нулі є простими, 

тоді в них відбувається зміна знаку функції 1( , ) ( , ) ( )c
n nt K t T t  

   , 

тому умова Надя *
nN , очевидно, виконується, в якій число 

2
n

n


  .  

Нехай число нулів різниці 1( , ) ( , ) ( )c
n nt K t T t  

    більше 2n, 

тобто згідно умов теореми, неперервності та парності цієї функції 

(серед многочленів найкращого наближення парної функції доцільно 

розглядати парні многочлени) рівне 2n + 2, з них на проміжку (0;  ) 
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буде n + 1, зокрема серед цих точок будуть точки ,
2 2

k

k
t

n n

 
   

0; 1.k n   Якщо нуль 1nt   відмінний від попередніх, то всі ці нулі на 

проміжку  0;  будуть простими, тому функція ( , )n t   матиме на 

цьому проміжку число зміни знаку n + 1, що суперечить умові 

(0 0; ) ( ; ) ( 1)n
n nsign sign         . Якщо ж нуль 1nt   збігатиметь-

ся із якимось із нулів cosnt , то для функції ( , )n t   він буде нулем 

кратності 2, а число зміни знаку функції ( , )n t   буде рівне n – 1, що 

знову суперечить умові (0 0; ) ( ; ) ( 1)n
n nsign sign         . Отже, 

число нулів у ( , )n t   не може бути більшим за 2n і всі ці нулі є про-

стими, тому, як і в попередньому випадку, умова Надя виконується. 

Теорему доведено. 

Аналогічно можна довести таке твердження. 

Теорема 2. Нехай сумовні 2 -періодичні функції ( )s
i t  непе-

рервні на проміжку (0;2 ) . Якщо непарне ядро ( , )sK t   інтерпо-

люється тригонометричним многочленом порядку не вище n – 1 на 

періоді не більше як в 2n + 1 точці, многочлен *
1( )nT t  – інтерполює 

функцію ( , )sK t   в нулях sin nt , 1( , ) ( , ) ( )s
n nt K t T t  

   , 

1(0 0; ) ( 0; ) ( 1)nn nsign sign           , то ядро ( , )sK t   задово-

льняє умову Надя *
nN . 

Отже, до ядер із 1Т  та 2Т  можемо застосувати рівності (1).  

Наслідок 1. Якщо ядро ( , )cK t   задовольняє умови теореми 1, то  

1

1
1

1

1 1 1

( ) sup inf ( ) ( )

( ) sup inf ( ) ( )

n
C

n

n c c n cTf

n L n
Tf

E f x T x

E f x T x











  

   

M

M

M

M
 

  
1

1
( , )c

nE K t 



 

1 1

( 1) (2 1)4

2 1

km
i

i
i k

k n

k








 

 



  . 

Якщо ж ядро ( , )sK t   задовольняє умови теореми 2, то 

      1 1

1
( , )s

n C n L nC
E E E K t 


  M M

 

1 1

(2 1)4

2 1

m
i

i k

k n
i k








 




  . 
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Цікавими є випадки лінійних комбінацій ( , )K t   при яких різ-

ниця * ( , )т t   перетворюється в нуль у 2n + 2 точках на періоді при 

( , )cK t   парній функції, та у 2n + 1 точці на проміжку (0;2 ) , якщо 

( , )sK t   – непарна функція і при цьому інтерполюючий многочлен 

має порядок не вище за n – 1. Так, зокрема, у випадку виконання про-

тилежної умови до твердження 1T , а саме, 

1(0 0; ) ( ; ) ( 1)n
n nsign sign          , відповідно, до твердження 

2T  – (0 0; ) ( 0; ) ( 1)n
n nsign sign          , умова Надя *

nN  для 

ядра ( ; )K t   виконуватися не буде, проте матиме місце умова 
*
,1nN . 

Переконаємося в цьому. 

Теорема 3. Нехай сумовні 2 -періодичні функції ( )c
i t  непере-

рвні на проміжку (0;2 ) . Якщо ядро ( , )cK t   інтерполюється три-

гонометричним многочленом 1( )nT t  на періоді не більше як в 

(2n + 2) – x точках, то при кожному n N  існують числа 

( ), 1; ,i i n i m    такі, що ядро ( , )cK t  
 задовольняє умову 

*
,1nN , 

при цьому
1(0 0; ) ( ; ) ( 1)n

n nsign sign            . 

Доведення. Проінтерполюємо парне ядро ( , )cK t   парним три-

гонометричним многочленом 1( )nT t  степеня n – 1 в точках 

(2 1)

2( 1)
k

k
t

n





, k = 1, 2, …, n, тобто в нулях функції cos( 1)n t . Таку 

процедуру завжди можна здійснити, див., напр., [17, ч. ІІІ, г. 1, §5]. 

Для кожного натурального n знайдеться така лінійна комбінація 

( , )cK t  
, для якої будуть рівними значення функції ( , )cK t  

 та 

тригонометричного многочлена 1( )nT t  в точці 1

(2 1)

2( 1)
n

n
t

n








. А 

тоді, в силу парності справедливі рівності  

3 (4 3)
, ... 0

2( 1) 2( 1) 2( 1)
n n n

n

n n n

  
         

           
       

.  

Оскільки ядро ( , )cK t   інтерполюється тригонометричним мно-

гочленом 1( )nT t  на періоді не більше, як в (2n + 2) – x точках, то для 

неперервної функції ( , )n t    
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    1, , ( ) cos( 1)n nsign t sign K t T t sign n t    


      
  

.  

Тому ядро ( , )cK t  
задовольняє умову 

*
,1nN . Крім того 

1(0 0; ) ( ; ) ( 1)n
n nsign sign            . Отже, теорема доведена. 

Аналогічно можемо переконатися в справедливості наступного 
твердження. 

Теорема 4. Нехай сумовні 2 -періодичні функції ( )s
i t неперер-

вні на проміжку (0;2 ) . Якщо ядро ( , )sK t   інтерполюється три-

гонометричним многочленом 1( )nT t  на проміжку (0;2 )  не більше 

як в 2n + 1 точці, то при кожному n N  існують числа 

( ), 1; ,i i n i m     такі, що ядро ( , )sK t  
 задовольняє умову 

*
,1nN , 

при цьому (0 0; ) ( 0; ) ( 1)n
n nsign sign            .  

Доведення аналогічне доведенню Т 3: робимо інтерполяцію в 

точках , 1,2,..., 1
1

k
k n

n


 


, і відповідним підбором коефіцієнтів   

забезпечуємо інтерполяцію в точці 
1

n

n




. Із теорем 3 та 4 і рівнос-

ті (1) одержимо такий висновок. 

Наслідок 2. Якщо ядро ( , )cK t  
 із теореми 3 задовольняє умо-

ву 
*
,1nN , то при кожному n N  для класу ( )с LM M  – згорток із цим 

ядром справедлива рівність 

1( ) ( )n c c n LE EM M
 

1 1

(2 1)( 1)4

2 1

m
i

i
i k

k n

k









 

 



  . 

Якщо ядро ( , )sK t  
 із теореми 4 задовольняє умову 

*
,1nN , то 

при кожному n N  

1( ) ( )n c c n LE EM M
 

1 1

( 1) (2 1)( 1)4

2 1

km
i

i
i k

k n

k









 

  



  . 

Якщо лінійна комбінація  ( , ) ( , )c sK t K t   містить два додан-

ки, а коефіцієнти вектора   вибрати у вигляді (1, )  , то значення 

,  при якому ядро задовольняє умову 
*
,1nN  єдине. Якщо число до-

данків m більше двох, вказана властивість може місця не мати. 
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Проілюструємо випадки виконання умов теорем 3 та 4.  

1. Нехай 
3

1 1

sin sin
( , ) , 2s

k k

kt kt
K t n

k k
 

 

 

    . У роботі [18] цей 

приклад розглянуто як частковий випадок (теорема 3, 2m  ) і по-

казано, що 2,1( , )sK t N  . Крім того, із [18] випливає, що маємо 

п’ять точок інтерполяції 
2 4 5

, , , ,
3 3 3 3

   


 
 
 

,можна обчислити, 

що 12

27
, ( ) sin

3
T t t






    . Отже, *
2 2

27
, sin 3sign t sign t


 
   

 
. 

Між іншим, 2 2

27
(0 0; ) 1;sign



    оскільки  

2

27 1 9
( ; ) 0,

2 4 3
n





       то 2 2

27
( 0; ) 1,sign 



     

тому  

2
2 22 2

27 27
(0 0; ) ( 0; ) 1 ( 1)sign sign 

 

         . 

2. Нехай  

1 1

sin 1 3sin
( , ) sin

2 10 6cos3

k

s

k k

tkt t
K t kt

tk


  

 

 

 
    

 
 

(0 1), (0,2 ), 2.t n       

Проінтерполювавши многочленом 1( ) sinT t b t  в точці 
3

t


 , із 

рівнянь * *
2 2

2
, , 0

3 3

 
 

   
      

   
 отримуємо 

91

54 3


   , 

18 3
b


   

Аналогічно отримали ті ж самі п’ять точок 
2 4 5

, , , ,
3 3 3 3

   


 
 
 

, в 

яких різниця 2 ( , )t    перетворюється в нуль. Для того, щоб показа-

ти, що різниця 2 ( , )t    не має інших нулів, подамо її у вигляді двох 

доданків 2 2,1 2,2( , ) ( ) ( )t t t        , де 2,1 1( ) sin
2

t
t b t

 
   , 

2,2 2

3sin
( ) sin

10 6cos

t
t b t

t
  


, а числа 1 2,b b  визначаються із умов рів-

ності нулю відповідних складових в точці 
3


: 1 2

2 3
,

73 3
b b


  . Кож-
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на із вказаних різниць в точці π – 0 приймає значення 0 0  ( оскільки 

2,1 2,2( ) ( )    2,1 2,20, ( ) 0, ( ) 0       ). Застосовуючи правило 

Лопіталя, обчислимо наступну границю  

2,1

2,2
2

1 2
cos

( ) 1 1 112 2 12 3 3lim lim
30cos 18 3 27 23 3( ) cos

7(10 6cos )

t t

t
t

tt t
t

 





      

 
  

        


 

1 112 2 1 32 3 2 1
0,9 1

27 2 13 23 3 3 3

 



   
         

   
.  

Отже, при t   2 2,1 2,2( , ) ( ) ( ) 0t t t          , тому на 

проміжку (0, ) вираз 2 ( , )t    має парну кількість нулів. Якщо при-

пустити, що їх більше двох, то матимемо хоча б чотири, а тоді рів-

няння 2 ( , ) 0t     на проміжку (0;2 ) в силу теореми Ролля матиме 

не менше 8 коренів. Але в такому випадку рівняння 

1 22

1 30cos 18
cos cos 0

2 (10 6cos )

t
b t b t

t
  

    
 

 має хоча б 8 коренів, що 

неможливо. Максимальне число нулів на періоді тригонометричного 
многочлена третього порядку – шість. Отже,  

2

91
, sin 3
54 3

sign t sign t
  

   
 

.  

Крім того, як випливає із наведених раніше міркувань 

 
2

2 2

91 91
(0 0; ) ( 0; ) 1 ( 1)

54 3 54 3
sign sign

 
         . 

3. А тепер розглянемо різницю парних ядер Бернуллі: 

2 4
1 1

cos cos
( , ) , 2c

k k

kt kt
K t n

k k
 

 

 

    . 

Аналогічно до непарного випадку (п.1) можемо довести, застосовую-
чи теорему Ролля, що ядра такого вигляду парним тригонометричним 
многочленом можуть інтерполюватися не більше як в 2 2n точках, 

тобто в нашому випадку в шести на періоді.  
Відомо, що (див. [19, с. 726, 776]) 

  
4 3 2 2 4

2 21
( , ) 3 6 2

12 48 12 12 90

c t t t
K t t t

  
   

 
        

 
.  

Нехай інтерполяційний многочлен має вигляд 1 0 1( ) cosT t b b t  , а 

2 1( , ) ( , ) ( )ct K t T t    . Система із трьох рівнянь 2 , 0,
6


 

  
 
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2 , 0,
2


 

  
 

 2

5
, 0

6


  

  
 

 має розв’язком числа 
2

1080
,

413




   

0

6615
,

535248
b   

2

1

149

1239 3
b


  . Більше нулів інтерполяції не може бути, 

отже, 2 2

1080
, cos3
413

sign t sign t


 
   

 
.  

Можемо переконатися, що 2 (0, ) 0,   а 2 ( ) 0  , тому 

3
2 2(0; ) ( ; ) ( 1)sign sign          . 

Висновки. Одержано достатні умови для лінійних комбінацій пар-

них, а також непарних ядер, для яких виконується «узагальнена» умова 

Надя ,1nN 
. При виконанні цих умов обчислено точне значення найкра-

щих наближень класів періодичних функцій, що задаються за допомогою 

згорток з фіксованими твірними ядрами, що є такими лінійними комбіна-

ціями, в метриках просторів неперервних та інтегровних функцій.  
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THE BEST APPROXIMATION OF FUNCTION CLASSES 
GENERATED BY COMPOSITE KERNELS 

The set of periodic functions whose essential supremum of the modu-

lus of their r-th derivatives does not exceed one constitutes a class of con-

volutions of the Bernoulli kernel of order r with elements of the unit ball in 

the space of summable, essentially bounded periodic functions with zero 

mean over a period. In 1936, J. Favard obtained exact values for the best 

approximations of such classes by trigonometric polynomials of order not 

exceeding n − 1 in the uniform metric for every natural n. In further stud-

ies, when finding upper bounds of the best approximations of classes of 

convolutions with fractional Bernoulli kernals, generalized Weyl-Nagy 

kernels, and Poisson kernels by trigonometric polynomials of a given or-

der, both in uniform and integral metrics were considered. In 1938, the 

Hungarian mathematician B. Nagy proposed a sufficient condition for a 

kernel of class of convolutions (the so-called Nagy condition): there exists 

a trigonometric polynomial of order n − 1 that interpolates the kernel at 2n 

uniformly distributed points on the period, and only at those points, with 



Математичне та комп’ютерне моделювання 

120 

alternating signs of the difference between the kernel and the polynomial. 

Satisfying this condition makes it possible to compute the best approxima-

tion of the kernel in the integral metric, as well as the best approximation 

of the corresponding convolution class in both uniform and integral met-

rics. In 1946, S. Nikolsky generalized Nagy’s condition. 

Thanks to the results of M. Krein (1938), in most cases it is not diffi-

cult to construct a trigonometric polynomial that interpolates a given kernel 

at 2n uniformly spaced points of the period. The main difficulty lies in 

proving that no additional interpolation points exist. When studying certain 

kernels, mathematicians encountered the phenomenon that, besides the 

«guaranteed» 2n interpolation points, «extra» interpolation points may ap-

pear. This motivated researchers to investigate kernels for which the 

«standard» Nagy condition fails. The present work takes a step in this di-

rection. We establish several sufficient conditions for linear combinations 

of even kernels and, likewise, for odd kernels, ensuring that they are inter-

polated by trigonometric polynomials of order n − 1 only at 2n + 2 uni-

formly distributed points of the period in the even case, and only at a single 

uniformly distributed set of 2n + 1 points in the odd case, with alternating 

signs of the difference between the linear combination and the polynomial 

at the interpolation points. Thus, for these cases, polynomials of order 

n − 1 provide the best approximation as if they were polynomials of order 

n. The paper also presents examples of differences of odd kernels (Ber-

noulli, Bernoulli and Poisson), as well as differences of even Bernoulli 

kernels, which illustrate the theorems obtained here. As a consequence, the 

work also determines the values of the best approximations by trigonomet-

ric polynomials of order n for certain classes of convolutions with such lin-

ear combinations of odd (even) kernels for which the Nagy condition of 

order n fails, but the corresponding condition of one order higher holds. 

Key words: best approximation of linear combinations of kernels; 

Stepanets classes; sufficient Nagy condition. 

Отримано: 30.10.2025 
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