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ГІПЕРБОЛІЧНІ КРАЙОВІ ЗАДАЧІ МАТЕМАТИЧНОЇ  
ФІЗИКИ В КУСКОВО-ОДНОРІДНОМУ КЛИНОВИДНОМУ 

ЦИЛІНДРИЧНО-КРУГОВОМУ ПІВПРОСТОРІ З ПОРОЖНИНОЮ 

У пропонованій статті методом класичних інтегральних і 
гібридних інтегральних перетворень у поєднанні з методом 
головних розв՚язків (матриць впливу та матриць Гріна) вперше 
побудовано єдині точні аналітичні розв’язки гіперболічних 
крайових задач математичної фізики в кусково-однорідному за 
радіальною змінною r клиновидному за кутовою змінною φ 
циліндрично-круговому півпросторі з порожниною. 

Розглянуто випадки задання на гранях клина крайових 
умов 1-го роду (Діріхле) і 2-го роду (Неймана) та їх можливих 
комбінацій (Діріхле-Неймана, Неймана-Діріхле). 

Для побудови розв՚язків досліджуваних початково-крайо-
вих задач застосовано скінченне інтегральне перетворення 
Фур’є щодо кутової змінної φ, інтегральне перетворення Фур’є 
на декартовій півосі (0; +∞) щодо аплікатної змінної z та гіб-
ридне інтегральне перетворення типу Вебера на полярній осі 
(R0; +∞) з n точками спряження щодо радіальної змінної r. 

Послідовне застосування інтегральних перетворень за геомет-
ричними змінними (r, φ, z) дозволяє звести тривимірні початково-
крайові задачі спряження до задачі Коші для звичайного лінійно-
го неоднорідного диференціального рівняння 2-го порядку, єди-
ний розв’язок якої виписано в замкнутому вигляді. 

Застосування обернених інтегральних перетворень до одержа-
ного розв’язку в просторі зображень відновлює в явному вигляді 
у просторі оригіналів розв’язки розглянутих гіперболічних крайо-
вих задач математичної фізики через їх інтегральне зображення. 

При цьому головні розв’язки задач одержано в явному ви-
гляді. 

Ключові слова: гіперболічне рівняння, початкові та кра-
йові умови, умови спряження, інтегральні перетворення, гіб-
ридні інтегральні перетворення, головні розв’язки. 
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Вступ. Теорія крайових і мішаних (початково-крайових) задач 
для різних типів диференціальних рівнянь з частинними похідними, 
зокрема рівнянь математичної фізики, – важливий розділ сучасної 
теорії диференціальних рівнянь, який в цей час інтенсивно розвива-
ється. Її актуальність обумовлена як значимістю її результатів для 
розвитку багатьох розділів математики, так і численними застосуван-
нями її досягнень при дослідженні різноманітних математичних мо-
делей різних процесів і явищ фізики, хімії, біології, медицини, еко-
номіки, механіки, техніки, новітніх технологій. 

Вагомі результати з теорії задачі Коші та початково-крайових 
задач для гіперболічних рівнянь і їх систем одержано в [1-8] та в пра-
цях інших вітчизняних і зарубіжних математиків. 

Добре відомо, що складність досліджуваних крайових задач сут-
тєво залежить як від властивостей коефіцієнтів рівнянь (різні види 
виродженостей і особливостей), так і від геометричної структури об-
ласті (гладкість межі, наявність кутових точок, обмеженість, необме-
женість тощо), в якій розглядається задача. На цей час досить деталь-
но вивчено властивості розв՚язків і розвинуто різноманітні методи 
побудови розв՚язків (точні та наближені) крайових задач для ліній-
них, квазілінійних і деяких нелінійних рівнянь різних типів (еліптич-
них, параболічних, гіперболічних) в однозв’язних областях (однорід-
них середовищах), які обумовлені згаданими вище властивостями 
коефіцієнтів рівнянь і геометрією області, та побудовано функціона-
льні простори коректності задач в сенсі Адамара. 

Водночас багато важливих прикладних задач термомеханіки, те-
плофізики, дифузії, теорії пружності, теорії електричних кіл, теорії 
коливань, механіки деформівного твердого тіла приводять до крайо-
вих і мішаних задач для диференціальних рівнянь з частинними похі-
дними різних типів не тільки в однорідних середовищах, коли коефі-
цієнти рівнянь є неперервними функціями, але й в неоднорідних і 
кусково-однорідних середовищах, коли коефіцієнти рівнянь є куско-
во-неперервними функціями чи, зокрема, кусково-сталими [9-11]. 

Відомо, що крім методу відокремлення змінних (методу Фур’є) та 
його узагальнень, одним із важливих і ефективних методів вивчення 
лінійних крайових і мішаних задач для диференціальних рівнянь з час-
тинними похідними в однорідних середовищах є метод інтегральних 
перетворень, який дає можливість побудувати в аналітичному вигляді 
точні розв’язки розглянутих задач через їх інтегральне зображення. 

У той же час для досить широкого класу лінійних крайових за-
дач у кусково-однорідних середовищах ефективним методом побудо-
ви їх розв՚язків виявився метод гібридних інтегральних перетворень, 
що породжені відповідними гібридними диференціальними операто-
рами, коли на кожній компоненті зв’язності кусково-однорідного се-
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редовища розглядаються або ж різні диференціальні оператори, або ж 
диференціальні оператори того ж самого вигляду, але з різними на-
борами коефіцієнтів [12-14]. 

У цій статті, яка є логічним продовженням [15], методом класичних 

інтегральних і гібридних інтегральних перетворень у поєднанні з мето-

дом головних розв՚язків вперше побудовано інтегральні зображення єди-

них точних аналітичних розв՚язків гіперболічних початково-крайових 

задач математичної фізики в кусково-однорідному клиновидному цилін-

дрично-круговому півпросторі з циліндрично-круговою порожниною. 

Постановка задачі. Розглянемо задачу побудови обмеженого на 

множині 
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одними з крайових умов на гранях клина [12] 
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та умовами спряження [6] 
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– шукана дійсна двічі неперервно диференційовна функція. 

Зауважимо, що: 

1) у випадку 0j   ( 1, 1j n  ) рівняння (1) є класичним тривимір-

ним неоднорідним рівнянням коливань (хвильовим рівнянням, рі-

внянням Д’аламбера) для ортотропного середовища у циліндрич-

ній системі координат; 

2) якщо  
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де 1 2,k kE E  – модулі Юнга ( 1,k n ), то умови спряження (9) збіга-

ються з класичними умовами ідеального механічного контакту. 

Таким чином, гіперболічні початково-крайові задачі спряжен-

ня (1)-(4), (5), (9); (1)-(4), (6), (9); (1)-(4), (7), (9); (1)-(4), (8), (9) можна 

розглядати як узагальнені математичні моделі коливних процесів у 

кусково-однорідному клиновидному циліндрично-круговому півпро-

сторі з порожниною. 

Основна частина. Припустимо, що розв’язки гіперболічних по-

чатково-крайових задач (1)-(4), (5), (9); (1)-(4), (6), (9); (1)-(4), (7), (9); 

(1)-(4), (8), (9) існують і задані й шукані функції задовольняють умо-
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ви застосовності залучених далі прямих та обернених інтегральних і 

гібридних інтегральних перетворень [6, 12]. 

Згідно з [12] визначимо скінченні пряме ,m ikF  та обернене 1
,m ikF  ін-

тегральні перетворення Фур’є щодо кутової змінної   за формулами: 
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Інтегральний оператор ,m ikF , який діє за формулою (10), внаслі-

док тотожності (12) ставить у відповідність тривимірним початково-
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крайовим задачам спряження (1)-(4), (5), (9); (1)-(4), (6), (9); (1)-(4), 

(7), (9); (1)-(4), (8), (9) задачу побудови обмеженого на множині 

 ( , , ) : 0; ; (0; )nD t r z t r I z       класичного розв’язку двовимір-

них диференціальних рівнянь гіперболічного типу 2-го порядку 
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 (13) 

з початковими умовами 

 
,1 2

, , ,0
0

( , , )
( , , ) ( , ); ( , ),

jm ik

jm ik jm ik jm ikt
t

u t r z
u t r z g r z g r z

t



 


 (14) 

крайовими умовами 

,

, ,

0

( , ); 0; 0,1; 1, 1,

s
jm ik

jm ik jm ik s
z z

u
h u w t r s j n

z z 

 
       
  

 (15) 

  
0

1, ,0 0
11 11 1 , 0 , , ; 0; 0,1

s
n m ik

m ik m ik s
r R r

u
u g t z s

r r
 



 

 
    

  
 (16) 

та умовами спряження 

, 1, ,1 1 2 2 0; 1,2; 1, ,

k

p p p p
pm ik p m ikj j j j

r R

u u j k n
r r

    



      
         

     
 (17) 

де 
2 2 1

, , , , ,( , , ) ( , , ) ( , , ); .jm ik m ik j m ik jm ik rj j m ikG t r z f t r z a r t r z a a        

До двовимірної крайової задачі (13)-(17) застосуємо інтегральне 

перетворення Фур’є на декартовій півосі (0; )  щодо змінної z  [6]: 

  
0

( ) ( ) ( , ) ( ),F g z g z K z dz g 


    (18) 

 1

0

[ ( )] ( ) ( , ) ( ),F g g K z d g z   



    (19) 

 
2

2

2
0

( ) (0, ) ,
z

d g dg
F g K hg

dzdz
  



   
       

  
 (20) 

де ядро перетворення має вигляд 

2 2

2 cos( ) sin( )
( , ) .

z h z
K z

h

  


 





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Інтегральний оператор F , який діє за формулою (18), внаслідок 

тотожності (20) ставить у відповідність початково-крайовій задачі 

спряження (13)-(17) задачу побудови обмеженого на множині 

 ( , ) : 0; nD t r t r I      класичного розв’язку одновимірних дифере-

нціальних рівнянь В -гіперболічного типу 

  
,

2
, 2 2 2 2

, , ,2
[ ] ( , , );

; 1, 1

jm ik

jm ik

rj jm ik zj j jm ik jm ik

j

u
a B u a u P t r

t

r I j n

   


   


  

 (21) 

з початковими умовами 

 ,1 2
, , ,0

0

( , , )
( , , ) ( , ); ( , ),

jm ik

jm ik jm ik jm ikt
t

u t r
u t r g r g r

t


  





 


 (22) 

крайовими умовами 

 
0

1, ,0 0
11 11 1 , 0 , , ; 0; 0,1

s
n m ik

m ik w ik sr R
r

u
u g t s

r r
  






 
    

  
 (23) 

та умовами спряження 

, 1, ,1 1 2 2 0; 1,2; 1, ,

p

p p p p
pm ik p m ikj j j j

r R

u u j p n
r r

    



      
         

     
 (24) 

де 
,

22
,

2 2

1
jm ik

jm ik
B

r rr r


 
  


 – класичний диференціальний оператор 

Бесселя [12], 
2

, , ,( , , ) ( , , ) (0, ) ( , ).jm ik jm ik zj jm ikP t r G t r a K w t r     

До одновимірної початково-крайової задачі спряження (21)-(24) 

застосуємо гібридне інтегральне перетворення типу Вебера на поляр-

ній осі nI   з n  точками спряження щодо радіальної змінної r  [6]: 

  
0

( ) ( ) ( ) ( , ) ( ) ( ),n

R

M f r f r V r r rdr f  


   (25) 

 1
( )

0

( ) ( ) ( , ) ( ) ( ),nM f f V r d f r    


         (26) 

 

 

1

0

1
2 2

( ) ( , )

1

1
0 2 0 0
11 1 0 1 1 0 11 11

[ ( )] ( ) ( ) ( , )

( , ) .

k

k

Rn

n m ik k k k

k R

r R

M B f r f f r V r rdr

df
a R V R f

dr

    

    











      

 
  

 

 
 (27) 
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У формулах (25)-(27) беруть участь, виписані в [6], спектральна 

функція ( , )V r  , вагова функція ( )r , спектральна щільність ( )  

та гібридний диференціальний оператор Бесселя 

, 1, ,

2 2
( , ) 1 1

1

( ) ( ) ( ) ,
jm ik n m ik

n

m k j j j n n

j

B a r R R r B a r R B   
 



      

де ( )x  – одинична функція Гевісайда [12], 2 2 ,k rka a  
2
k  – деякі сталі. 

Запишемо диференціальні рівняння (21) і початкові умови (22) у 

матричній формі 

1 ,

2 ,

1, ,

2
2 2
1 1 1 ,2

2
2 2
2 2 2 ,2

2
2 2

1 1 1, ,2

( ) ( , , )

( ) ( , , )

..............................................................

( )

m ik

m ik

n m ik

m ik

m ik

n n n m ik

a B q u t r
t

a B q u t r
t

a B q u
t







 

 


  

 
    

 
    

 
    

1 ,

2 ,

1, ,

( , , )

( , , )
,

.......................

( , , )( , , )

m ik

m ik

n m ik

P t r

P t r

P t rt r





 

 
  
  
  
  
      
  
  
  
    

 

 (28) 

 

1
1 ,1 ,

1
2 , 2 ,

1
1, ,

1, ,0

1 ,

2 ,

( , )( , , )

( , , ) ( , )
;

..................... ...................

( , , ) ( , )

( , , )

( , , )

.........

m ikm ik

m ik m ik

n m ik
n m ikt
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m ik

g ru t r

u t r g r

u t r g r

u t r

u t r

t



 

 








  
  
      
  
     





2
1 ,

2
2 ,

2
1, ,

1, ,0

( , )

( , )
,

............ ...................

( , , ) ( , )

m ik

m ik

n m ik
n m ikt

g r

g r

u t r g r





 


  
  
      
  
     

 (29) 

де 
2 2 2 2( ) ;j zj jq a     1, 1.j n   

Інтегральний оператор ( )nM , який діє за формулою (25), зобра-

зимо у вигляді операторної матриці-рядка 

 

 
1 2

0 1

1

( ) 1 1 2 2

1 1

( , ) ( , )

( , ) ( , )
n

n n

R R

n

R R

R

n n n n

R R

M V r rdr V r rdr

V r rdr V r rdr

   

   





 











 

 

 (30) 
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і застосуємо за правилом множення матриць до задачі (28), (29). Вна-

слідок тотожності (27) одержуємо задачу Коші для звичайного неод-

норідного диференціального рівняння 2-го порядку 

 

 

21 1
2 2 2

, ,2
1 1

1
0 2
11 1 0 1 1 0 0 ,

( ) ( , , ) ( , , )

( , ) ( , ),

n n

j j jm ik jm ik

j j

m ik

d
q u t P t

dt

a R V R g t

      

   

 

 



 
      

 



 
 (31) 

 

1 1
1

, ,

1 10

1 1
2

, ,

1 10

( , , ) ( , ),

( , , ) ( , ),

n n

jm ik jm ik

j jt

n n

jm ik jm ik

j jt

u t g

d
u t g

dt

   

   

 

 

 

 





 

 

 (32) 

де 

1

, ,( , , ) ( , , ) ( , ) ; 1, 1,

j

j

R

jm ik jm ik j j

R

u t u t r V r rdr j n    



    

1

, ,( , , ) ( , , ) ( , ) ; 1, 1,

j

j

R

jm ik jm ik j j

R

P t P t r V r rdr j n    



    

1

, ,( , ) ( , ) ( , ) , 1, 1, 1,2.

j

j

R

s s
jm ik jm ik j j

R

g g r V r rdr j n s    



     

Припустимо, не зменшуючи загальності розв’язку задачі, що 

 2 2 2 2
1 2 1 1max ( ), ( ), ... , ( ) ( )nq q q q      і покладемо всюди 

2 2 2
1 ( ) ( ); 1, 1.j jq q j n       Задача Коші (31), (32) набуває вигляду 

 

2
, 2

, ,2
( , ) ( , , ),

m ik
m ik m ik

d u
u T t

dt
       (33) 
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, , ,0
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( , , )
( , , ) ( , ); ( , ),
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m ik m ik m ikt

t

du t
u t g g
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 
     




   (34) 

де 
1

2 2 2 2 2
, , 1 1

1

( , , ) ( , , ); ( , ) ;
n

m ik jm ik z

j

u t u t a        




      

 
1 1

0 2
, , 11 1 0 1 1 0 0 ,

1

( , , ) ( , , ) ( , ) ( , );
n

m ik jm ik m ik

j

T t P t a R V R g t       
 



   
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1 1
1 1 2 2

, , , ,

1 1

( , ) ( , ); ( , ) ( , ).
n n

m ik jm ik m ik jm ik

j j

g g g g       
 

 

    

Відомо [6], що єдиним розв’язком задачі Коші (33), (34) є функція 

 

2 1
, , ,

,

0

( , , ) ( , , ) ( , ) ( , , ) ( , )

( , , ) ( , , ) ,

m ik m ik m ik

t

m ik

d
u t N t g N t g
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N t T d

         

      

  

 
  (35) 

де розв’язуюча функція (функція Коші) має вигляд 

 
1

2 2 2 2 2
1 1

sin( ( , ) )
( , , ) , ( , ) .
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z

t
N t a

 
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 


    


 

Оскільки суперпозиція операторів ( )nM  та 
1

( )nM 
 є одиничним 

оператором 
1 1

( ) ( ) ( ) ( )( ),n n n nM M M M I    то оператор 
1

( ) ,nM 
 як обе-

рнений до оператора, визначеного за формулою (30), зобразимо у 

вигляді операторної матриці-стовпця 

  

 
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 
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 
 
 
 
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





 (36) 

і застосуємо за правилом множення матриць до матриці-елемента 

, ( , , )m iku t   
  , де функція , ( , , )m iku t    визначена за формулою (35). 

Одержимо єдиний розв’язок одновимірної гіперболічної початково-

крайової задачі спряження (21)-(24): 
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Застосувавши послідовно до функцій , ( , , ),jm iku t r   визначених 

формулами (37), обернені оператори 1F
  та 1

,m ikF , і виконавши не-

складні перетворення, одержуємо функції 
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які визначають єдині розв’язки гіперболічних початково-крайових 

задач спряження (1)-(4), (5), (9); (1)-(4), (6), (9); (1)-(4), (7), (9); (1)-(4), 

(8), (9) при відповідних значеннях ik  (11), (12), (21), (22). 

У формулах (38) застосовано компоненти 
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тково-крайових задач, де  
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Проаналізуємо формули (38) залежно від типу крайових умов на 

гранях кусково-однорідного клиновидного циліндрично-кругового 

півпростору з порожниною. Розглянемо, наприклад, випадок крайо-

вих умов (5) (умови Діріхле).  

У цьому випадку функції Гріна мають вигляд 
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Якщо визначити тангенціальні функції Гріна 
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то розв’язок задачі (1)-(4), (5), (9) можемо записати у вигляді 
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З використанням властивостей функцій впливу та функцій Гріна 
безпосередньо перевіряємо, що функції 

,11( , , , ),ju t r z  визначені форму-

лами (39), задовольняють рівняння (1), початкові умови (2), крайові умо-
ви (3)-(5) та умови спряження (9) в сенсі теорії узагальнених функцій. 

Єдиність розв’язку (39) випливає із його структури (інтегрального 
зображення) та єдиності головних розв’язків (функцій впливу та функцій 
Гріна) гіперболічної початково-крайової задачі (1)-(4), (5), (9). 

Можна довести, що при відповідних умовах на вихідні дані, форму-
ли (39) визначають обмежений класичний розв’язок розглянутої задачі. 

Підсумком викладеного вище є така теорема. 

Теорема. Якщо функції ( , , , ),jf t r z  ( , , ),s
jg r z  ( , , ),jw t r   

1 ( , , ),jg t r z  1 ( , , ),jw t r z  ( 1,2; 1, 1)s j n   задовольняють умови: 

1) двічі неперервно диференційовні за кожною змінною; 
2) мають обмежену варіацію за геометричними змінними; 

3) абсолютно сумовні за змінною z  на півосі  0; ;  

4) абсолютно сумовні з ваговою функцією    r r r   за змінною 

r  на кусково-однорідній полярній осі ;nI


 

5) справджують умови спряження; 
6) функція 0 ( , , )g t z  задовольняє умови 1)-3), то гіперболічна почат-

ково-крайова задача спряження (1)-(4), (5), (9) має єдиний обмеже-
ний класичний розв’язок, який визначається за формулами (39). 

Випадки крайових умов (6), (7), (8) на гранях клина можна про-
аналізувати аналогічно. 

Зауваження 1. У випадку 0rj j zj ja a a a     формули (38) 

визначають структури розв՚язків розглянутих задач в ізотропному 
кусково-однорідному клиновидному циліндрично-круговому півпрос-
торі з порожниною. 

Зауваження 2. Випадок зміни   в межах 1 2     можна 

звести до розглянутого заміною 1     , 0 2 1    . 

Зауваження 3. Параметр h дозволяє виділяти з формул (38) 
розв’язки крайових задач у випадках задання на площині z = 0 крайо-

вих умов 1-го роду ( )h  і 2-го роду ( 0)h . 

Зауваження 4. Параметри 0 0
11 11,   дозволяють виділяти з фор-

мул (38) розв’язки крайових задач спряження у випадках задання на 

радіальній поверхні 0r R  крайових умов 1-го роду  0 0
11 110, 1 ,    

2-го роду  0 0
11 111, 0     та 3-го роду 0 0

11 111, 0      . 
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Зауваження 5. Аналіз розв’язків (38) залежно від аналітичного ви-
разу заданих функцій проводиться безпосередньо із загальних структур. 

Висновки. Методом класичних інтегральних і гібридних інтег-
ральних перетворень у поєднанні з методом головних розв՚язків (фу-
нкцій впливу та функцій Гріна) вперше побудовано єдині точні аналі-
тичні розв’язки гіперболічних крайових задач у кусково-однорідному 
клиновидному циліндрично-круговому півпросторі з циліндрично-
круговою порожниною. Одержані інтегральні зображення розв՚язків 
носять алгоритмічний характер, неперервно залежать від параметрів і 
даних задачі й можуть бути використані як у теоретичних досліджен-
нях, так і в практиці інженерних розрахунків математичних моделей 
коливних процесів у кусково-однорідних середовищах, які описують-
ся циліндричною системою координат. 
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HYPERBOLIC BOUNDARY VALUE PROBLEMS  
OF MATHEMATICAL PHYSICS IN A PIECEWISE 

HOMOGENEOUS WEDGE-SHAPED CYLINDRICAL- 
CIRCULAR HALF-SPACE WITH A CAVITY 

The unique exact analytical solutions of hyperbolic boundary value prob-

lems of mathematical physics in piecewise homogeneous by the radial variable 

r, wedge-shaped by the angular variable φ, cylindrical-circular half-space with 

a cavity were constructed at first time by the method of classical integral and 

hybrid integral transforms in combination with method of main solutions (ma-

trices of influence and Green matrices) in the proposed article. 

The cases of assigning on the verge of the wedge the boundary conditions 

of the 1st kind (Dirichlet) and the 2nd kind (Neumann) and their possible com-

binations (Dirichlet – Neumann, Neumann – Dirichlet) are considered. 

Finite integral Fourier transform by an angular variable φ, an integral 

Fourier transform on the Cartesian semiaxis (0; +∞) by an applicative vari-

able z and hybrid Weber-type integral transform on the polar axis (R0; +∞)  

with n conjugate points by the radial variable were used to construct solu-

tions of investigated boundary value problems. 

The consistent application of integral transforms by geometric variables al-

lows us to reduce the three-dimensional initial boundary-value problems of 

conjugation to the Cauchy problem for an ordinary linear inhomogeneous 2nd 

order differential equation whose unique solution is written in a closed form. 

The application of inverse integral transforms to the obtained solution 

in the space of images restores in an explicit form in the space of the origi-

nals the solutions of the considered hyperbolic boundary value problems of 

mathematical physics through their integral image. 

At the same time, the main solutions of the problems are obtained in an 

explicit form. 

Key words: hyperbolic equation, initial and boundary conditions, con-

jugation conditions, integral transforms, hybrid integral transforms, main 

solutions. 

Отримано: 4.12.2025 
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