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УМОВИ ЕКСТРЕМАЛЬНОСТІ ДОПУСТИМОГО  
ЕЛЕМЕНТА ЗАДАЧІ ВІДШУКАННЯ ТОЧКИ ШТЕЙНЕРА 

КІЛЬКОХ ЗАМКНЕНИХ КУЛЬ ДЕЯКОГО ПОЛІНОРМОВАНОГО 
ПРОСТОРУ ВІДНОСНО МНОЖИНИ ЦЬОГО ПРОСТОРУ 

ОСНОВАНІ НА ДВОЇСТОМУ ПОДАННІ ПОХІДНОЇ  
ЗА НАПРЯМОМ ЕКВІВАЛЕНТНОЇ ЇЙ ЗАДАЧІ  

НАЙКРАЩОГО НАБЛИЖЕННЯ 

Як відомо (див., наприклад, [1, с. 47]), класична задача Штей-
нера в лінійному нормованому просторі полягає у відшуканні в 
заданій множині цього простору такої точки (точки Штейнера), 
сума відстаней до якої від кожної з кількох фіксованих точок цьо-
го простору була б найменшою, тобто не перевищувала суми від-
станей заданих точок до будь-якої іншої точки цієї множини. 

На практиці доводиться мати справу з, так званими, «зва-
женими» задачами Штейнера, в яких відстаням, про які йшла 
мова вище, приписують різні «вагові» характеристики (див., 
наприклад, [1, с. 47]). 

Якщо у «зваженій» задачі Штейнера «зважені відстані» 
між фіксованими точками лінійного нормованого простору і 
точками його множини замінити на відстані між цими точка-
ми, породжені, взагалі кажучи, різними нормами, заданими на 
розглядуваному лінійному просторі, то отримаємо задачу 
Штейнера в полінормованому просторі, яка є узагальненням 
«зваженої» задачі Штейнера (див., наприклад, [2]).  

У роботі [2] для випадку, коли множина полінормованого 
простору, відносно якої розглядається узагальнена задача 
Штейнера, є опуклою, встановлено співвідношення двоїстості 
та умови екстремальності допустимого розв’язку цієї задачі, 
основані на співвідношенні двоїстості, що узагальнюють відо-
мі результати, отримані для задачі найкращого наближення 
елемента лінійного нормованого простору опуклою множиною 
цього простору (див., наприклад, [3]). 

Задача, що розглядається в роботі, отримується внаслідок 
заміни в узагальненій задачі Штейнера в полінормованому 
просторі фіксованих точок лінійного над полем дійсних чисел 
простору замкненими кулями, що визначаються відповідними 
нормами цього простору. В якості відстаней між отриманими 
кулями та точками фіксованої множини лінійного простору 
приймаються гаусдорфові відстані між ними, породжені від-
повідними нормами. 

© У. В. Гудима, 2025 
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мальності елемента. 

Вступ. У статті доведено еквівалентність задачі відшукання уза-

гальненої точки Штейнера кількох замкнених куль полінормованого 

простору відносно множини цього простору деякій задачі найкращо-

го наближення елемента лінійного нормованого простору множиною 

цього простору. З урахуванням цієї еквівалентності встановлено не-

обхідні, достатні умови та критерії екстремальності допустимого 

розв’язку розглядуваної задачі відшукання узагальненої точки Штей-

нера кількох замкнених куль полінормованого простору відносно 

множини цього простору, основані на двоїстому поданні похідної за 

напрямком її цільової функції. 

Постановка задачі. Нехай X  – лінійний над полем дійсних чисел 

простір, 
i

 , 1, ,i m  – норми, задані на X ,  , , 1,
i

X i m   – відповід-

ний полінормований простір;    :
i
r i i ii

B a y X y a r    , 1,i m , – 

замкнені кулі лінійних нормованих просторів  ,
i

X   з центрами у точ-

ках ia X  та радіусами ir ; ;V X  для  
ir iB a  та x V   

    
       

, max sup inf , sup inf
i

r iir ii

i r i i ix x y B ay B a x x

H B a x y x x y
  

  
   

  

 – 

гаусдорфові відстані між множинами  
ir iB a  та  x , де x X , лі-

нійного нормованого простору  ,
i

X  , 1,i m . 

Поставимо задачу відшукання величини 

        *

1

, 1, inf ,
i i

m

V r i i r i
x V

i

B a i m H B a x




   . (1) 

Якщо існує елемент *x V  такий, для якого 

             * *

1 1

, , 1, inf ,
i i i

m m

i r i V r i i r i
x V

i i

H B a x B a i m H B a x


 

    ,  

то його будемо називати узагальненою точкою Штейнера замкнених 

куль  
ir iB a , 1,i m , полінормованого простору  , , 1,

i
X i m   від-

носно множини V  цього простору або просто екстремальним елеме-

нтом для величини (1). 
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Ураховуючи викладе, задачу відшукання величини (1) будемо 

називати задачею відшукання узагальненої точки Штейнера замкне-

них куль  
ir iB a , 1, ,i m  полінормованого простору  , , 1,

i
X i m   

відносно множини V цього простору. 

Теорема 1. Справедлива рівність  

        *

1 1 1

, 1, inf , inf
i i

m m m

V r i i r i i iix V x V
i i i

B a i m H B a x a x r
 

  

 
     

 
   .(2) 

Для того щоб елемент *x  був екстремальним елементом для вели-

чини (1), необхідно і достатньо, щоб цей елемент був екстремальним 

елементом (оптимальним розв’язком) задачі відшукання величини 

 
1

inf
m

i ix V
i

a x




 . (3) 

Доведення. Переконаємося, перш за все, що для  
ir iB a , 1,i m , 

та x X  

     ,
i

i r i i ii
H B a x a x r   . (4) 

Дійсно, маємо, що  

 

    
   

 

, max sup , inf

sup , 1, .

i
r iir ii

r ii

i r i i iy B ay B a

i
y B a

H B a x y x y x

y x i m





  
    

  

  

 (5) 

Якщо для  1,...,i m  ia x , то згідно (5)  

    
 

, sup
i

r ii

i r i i i ii i
y B a

H B a x y x r a x r


      . 

У цьому випадку рівність (4) доведено.  

Розглянемо випадок, коли для  1,...,i m  ia x . Згідно (5)  

 

    
 

 

, sup

sup .

i

r ii

r ii

i r i i
y B a

i i i ii i i
y B a

H B a x y x

y a a x a x r





  

      
 (6) 

Легко переконатися, що точка 

   1
i

i
i i r i

i i

r
y x a x B a

a x

 
     

  

. 

Тому (див. (5), (6))  
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 
    sup ,

i

r ii

i i i i r i i iii i i
y B a

y x a x r y x H B a x a x r


          . 

Звідси впливає справедливість рівності (4) у цьому випадку. 
Внаслідок рівності (4) виконується рівність (2).  

Нехай *x  є екстремальним елементом для задачі відшукання ве-

личини (1). Тоді *x V  і для кожного x V  

 

    

    

* *

1 1 1

1 1 1

,

, .

i

i

m m m

i i i r i
i

i i i

m m m

i r i i ii
i i i

a x r H B a x

H B a x a x r

  

  

   

   

  

  

 (7) 

Звідки  

 *

1 1

m m

i i ii
i i

a x a x
 

    , x V . (8)  

Це означає, що *x  є екстремальним елементом для задачі від-

шукання величини (3). 

Навпаки, якщо *x  є екстремальним елементом для задачі відшу-

кання величини (3), то *x V  і для всіх x V  має місце нерівність (8). 

З (8) випливає, що для всіх x V  справедливі співвідношення (7). Тому 
*x  є екстремальним елементом для величини (1). 

Теорему доведено. 

Позначимо далі через mX  – m-арний декартів (прямий) добуток 

простору ,X  тобто  1{ ,..., : , 1, }m
m iX x x x X i m   . Покладемо для 

 1,..., mx x x ,  1,..., m
my y y X  , R :  

 1 1,..., m mx y x y x y    ,  1,..., mx x x   . 

Легко переконатися, що означені вище операції додавання еле-
ментів Xm та множення дійсних чисел на ці елементи задовольняють 
всім аксіомам лінійного над полем дійсних чисел простору. Отже, 

mX  є лінійним над полем дійсних чисел простором. Для кожного 

 1,..., m
mx x X  покладемо  1

1

,...,
m

m

m i iX
i

x x x


 . Легко перекона-

тися, що  , m

m

X
X   є лінійним нормованим простором. 

Будемо позначати далі:  ,i i
X X  , 1,i m ;  , m

m m

X
X X  ; 

*
iX  – простір, спряжений з iX , 1,i m ;  

*
mX  – простір, спряжений 

з mX . 
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Теорема 2 (див., наприклад, [2]). Для того щоб елемент   на-

лежав простору  
*

mX , необхідно і достатньо, щоб існували єдиним 

способом визначені функціонали *
i if X , 1, ,i m  такі, що 

   1

1

,...,
m

m i i

i

x x f x


 ,  1,..., m
mx x X , причому справедлива рів-

ність  
*

*

1
maxm

i
iX Xi m

f
 

 , де 
 

 
 

 

 
*

1

1

1

,..., , 1
,..., 0

,...,
sup

,...,
m

m
mm

m

m

X
x x X m X
x x

x x

x x








 , 

 
*

,
0

sup
i

i
i X

x X i
x

f x
f

x


 , 1,i m . 

Поряд із задачами відшукання величин (1), (3) будемо розгляда-
ти задачу відшукання величини 

 
 

   
1

1 1
,...,
inf ,..., ,...,

m

m

m m Xx x D
a a x x


 , (9) 

де   ,..., :mD x x X x V    – діагональ множини mV V V  . 

Зрозуміло, що задача відшукання величини (9) є задачею най-

кращого наближення елементи  1,..., m
ma a X  множиною mD X  

в лінійному нормованому просторі  , m

m

X
X  . 

Теорема 3. Справедлива рівність  

 
 

   
1

1 1
,...,

1

inf inf ,..., ,...,
m

m

m

i m mi Xx V x x D
i

a x a a x x
 



   . (10) 

Для того щоб елемент *x V  був екстремальним елементом 

для величини (1), необхідно і достатньо, щоб елемент  * *,....,x x D  

був екстремальним елементом для величини (9). 

Доведення. Нехай x V . Тоді  ,....,x x D  та  

   
 

   
1

1 1 1
,...,

1

,..., ,..., inf ,..., ,...,
m m

m

m

i m m mi X Xx x D
i

a x a a x x a a x x




     . 

Тому  

 
 

   
1

1 1
,...,

1

inf inf ,..., ,...,
m

m

m

i m mi Xx V x x D
i

a x a a x x
 



   . (11) 

Нехай тепер  1,...., mx x D . Тоді    1,...., ,....,mx x x x , де 

x V . Внаслідок цього одержуємо, що  
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       1 1 1,..., ,..., ,..., ,...,
m mm m mX X

a a x x a a x x     

 1

1 1

,..., inf
m

m m

m i ii iX x V
i i

a x a x a x a x


 

        . 

Звідси маємо, що  

 
 

   
1

1 1
,...,

1

inf ,..., ,..., inf
m

m

m

m m i iXx x D x V
i

a a x x a x
 



   . (12) 

Зі співвідношень (11), (12) випливає справедливість рівності (10). 

Нехай тепер *x V  та *x  є екстремальним елементом для вели-

чини (1). Згідно з теоремою 1 *x  є екстремальним елементом для ве-

личини (3). З урахуванням цього та (10) одержимо, що  

    * * *
1

1 1

,..., ,..., inf
m

m m

i m i ii x VX
i i

a x a a x x a x


 

        

 
   

1

1 1
,...,
inf ,..., ,...,

m

m

m m Xx x D
a a x x


  , 

причому  * *,....,x x D , оскільки *x V . 

Звідси випливає, що  * *,....,x x  є екстремальним елементом для 

величини (9). 

Нехай тепер    * * * *
1 ,...., ,....,mx x x x D  , де *x V , є екстрема-

льним елементом для величини (9). Згідно з (10) одержимо, що  

 
       

1

* *
1 1 1

,...,
inf ,..., ,..., ,..., ,...,

m
m

m

m m mXx x D X
a a x x a a x x


     

*

1 1

inf
m m

i i ii x V
i i

a x a x


 

     . 

Звідси випливає, що *x  є екстремальним елементом для величи-

ни (3). Відповідно до теореми 1 *x  є екстремальним елементом для 

величини (1). 

Теорему доведено. 

З теорем 1, 3 випливає, що умови екстремальності елемента 
*x V  для задач (1), (3) та умови екстремальності елемента 

 * *,....,x x D  для величини (9) співпадають. 

Актуальність теми. Актуальність задачі відшукання величини (1) 

та її екстремального елемента (узагальненої точки Штейнера) випливає 

зі змісту поняття узагальненої точки Штейнера, оскільки сума гаусдор-
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фових відстаней від замкнених куль  
ir iB a , 1, ,i m  полінормованого 

простору  , , 1,
i

X i m   до цієї точки *x V  не перевищує сум га-

усдорфових відстаней від цих куль до інших точок множини V . 

Задача Штейнера знаходить своє застосування при вирішенні 
питань оптимального розташування центрів обслуговування, деяких 
проблем механіки тощо. 

Вище встановлено, що задача відшукання величини (1) еквіва-

лентна задачі (3) відшукання точки Штейнера точок ia , 1,i m , по-

лінормованого простору  , , 1,
i

X i m  , частковими випадками якої 

є класична задача Штейнера, «зважена» задача Штейнера та ін. Тому 
актуальність задачі відшукання величини (1) підвищується ще й тим, 
що отримані при її дослідженні результати можна використати для 
встановлення відповідних результатів для тих задач, які вкладаються 
у схему її постановки, зокрема для задачі (3), а також для побудови 
збіжних чисельних методів розв’язування цих задач. 

Допоміжні твердження. 

Твердження 1. Нехай  ,X X   є лінійним над полем дійсних 

чисел нормованим простором, *X  – простір, спряжений з 

 ,X X  ; *,a x X ;  p x a x  , x X ;  *p x  – субдиферен-

ціал функції p  в точці *x  (див., наприклад, [4, c.74]). 

Тоді p  є опуклою і неперервною на X  функцією та: 

1)      * * * * *

1
: 1,max

def

f
p x f X f f x a f x a x a



 
          

 
 

 *

* *
X

B x a  , якщо *x a ; 

2)     *

* * *: 1
def

X
p x f X f B     , якщо *x a . 

Доведення. Використовуючи властивості норми, легко перекона-

тися, що для будь-яких 1 2,x x X ,  0;1   має місце співвідношення  

        1 2 1 21 1p x x p x p x        . 

Тому p  є опуклою на X  функцією (див., наприклад, [4, с. 56]). 

Її неперервність на X  випливає з нерівності: 

     1 2 1 2 1 2 1 2p x p x a x a x a x a x x x           , 

яка має місце для всіх 1 2,x x X . 
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Переконаємося у справедливості співвідношень 1), 2) цього тве-
рдження. 

Припустимо, що  *f p x . Тоді для всіх x X  

 
   

     

* * *

* * ,

x x x a x a x a x a

p x p x f x x

         

   

 (13) 

  * *f x x x x   . (14) 

Покладемо в нерівності (14) *x x z  , z X  та 0z  . Тоді 

одержимо, що   ,f z z 0z  . Звідки 

 
 

0

sup 1
z

f z
f

z

  . (15) 

Припустимо, що *x a . З нерівності (13) при x a  одержимо, що 

  * *x a f a x    ,  * *x a f x a   , 
 *

*
1

f x a

x a





. (16) 

Зі співвідношень (15) та (16) випливає, що 
 *

*
1

f x a
f

x a


 


, 

 * *f x a x a   . Тому при *x a  для  *f p x  одержимо, що 

1f  ,    * * *

1

sup
f

x a f x a f x a


     . 

Звідси випливає, що  *

* *
X

f B x a  . Тому  

    *

* * *
X

p x B x a   , якщо *x a . (17) 

Припустимо тепер, що  *

* *
X

f B x a  , тобто, що 1f  , 

   * * *

1
max

f
x a f x a f x a


     . Тоді для всіх x X  

   * * *p x p x a x a x x a x a           

         * * *

1
max

f
f x a f x a f x a f x a f x x


          . 

Тому  *f p x . Отже,  

    *

* * *
X

B x a p x   , якщо *x a . (18) 
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Зі співвідношень (17) та (18) робимо висновок про справедли-
вість рівності 1) твердження. 

Переконаємося у справедливості рівності 2). Нехай *x a . Тоді 

для всіх x X  

       * * * * *

1
max

f
p x p x a x a x x x f x x f x x


            

для всіх *

*
X

f B . 

Тому  

  *

* *
X

B p x  . (19) 

Нехай  *f p x . Тоді для всіх x X  

     * * * *p x p x a x a x x x f x x         . 

Звідси випливає, що 1f  . Тому *

*
X

f B . Отже, встановлено, що 

   *

* *
X

p x B  . (20) 

Зі співвідношень (19), (20) випливає справедливість рівності 2) 
твердження. 

Твердження доведено. 

Позначимо далі  

     1 1 1,..., ,..., ,..., ,
mm m m X

p x x a a x x    1,..., m
mx x X ; 

  ,i i i
p x a x   x X , 1,i m ;  * *

* * : 1
i i

iX X
B f X f   , 1,i m ; 

     * *
*

*

* * * * * *: 1, max
i i

Xi

i i i i iX X i f B
B x a f X f x a f x a f x a



  
         

  

,  

якщо *x X ,  1,...,i m , * .ix a  

Наслідок 1. Цільова функція  1,..., mp x x ,  1,..., m
mx x X , за-

дачі відшукання величини (9) є опуклою та неперервною на лінійному 

нормованому просторі  , m

m

X
X  ; функції  ip x  x X , 1,i m , є 

опуклими та неперервними на лінійних нормованих просторах 

 ,
i

X   відповідно. 

Для *x X  справедливі співвідношення: 

1) якщо для  1,...,i m  *
ix a , то    *

* * *

i
i iX

p x B x a   ; 

2) якщо для  1,...,i m  *
ix a , то   *

* *

i
i X

p x B  . 
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Справедливість наслідку випливає з твердження 1. 

Похідна за напрямком цільової функції задачі відшукання 

величини (9). Цільову функцію  1,..., mp x x ,  1,..., m
mx x X , задачі 

відшукання величини (9), можна подати у такому вигляді: 

     

     

1 1 1

1 1 1

1 1

,..., ,..., ,...,

,..., , ,..., ,

m

m

m m m X

m m
m

m m i i i i miX
i i

p x x a a x x

a x a x a x p x x x X
 

  

       
 (21) 

де, як і вище,   ,i i i
p x a x   x X , 1,i m . 

Теорема 4. Нехай *x V ,     * *
1 1,..., : iI x i m a x   , 

    * *
2 1,..., : iI x i m a x   . Тоді для  * *,....,x x D  та будь-якого 

 1,..., m
my y X  справедлива рівність 

 

    

 
 

 
 

 

 
 

   

** *
* * **

1 2

* *
* **

1 2

* *
1,...., , ,...,

max max

max .

i XX ii

iXi

m

i i
f Bf B x a

i I x i I x

i i i
f B x a

i I x i I x

p x x y y

f y f y

f y y

 
 

 
 

 

  

 

 

 

 (22) 

Доведення. Згідно з наслідком 1 функція  1,..., mp x x , 

 1,..., m
mx x X , є опуклою та неперервною на лінійному нормова-

ному просторі  , m

m

X
X  , а функції  ip x , x X , 1,i m , є опук-

лими та неперервними на лінійних нормованих просторах  ,
i

X  . 

Тому існують їх скінченні похідні в будь-яких точках лінійних нор-
мованих просторів, на яких ці функції розглядаються, та за будь-
якими напрямками цих просторів (див., наприклад, [5, с. 353]). 

Нехай *x V  і, отже,  * *,....,x x D , а  1,..., my y  є довільним 

напрямком простору Xm. Відповідно до зазначеного вище та рівнос-
ті (21) справедливі такі співвідношення: 

    
      * * * *

1
* *

1
0,

0

,..., ,..., ,...,
,..., , ,..., lim

m

m
t
t

p x x t y y p x x
p x x y y

t


 
    

       * *
* * * *

1 1 1

0, 0,
0 0

,..., ,...,
lim lim

m m

i i i
m i i

t t
t t

p x ty p x
p x ty x ty p x x

t t

 

 
 

 
  

  

 
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   

 
* *

*

0,
1 1

0

lim , ,
m m

i i i

i i
t

i i
t

p x ty p x
p x y

t
 



 
    (23) 

де     * *
1,..., , ,..., mp x x y y  – похідна функції p  в точці  * *,....,x x  

за напрямком  1,..., ,my y а  * ,i ip x y  – похідна функції ip  в точці 

*x  за напрямком iy , 1,i m .  

Відомо (див., наприклад, [5, с. 354]), що  

  
 

 
*

* , max
i

i i i
f p x

p x y f y


  . (24) 

Згідно з наслідком 1    *

* * *

i
i iX

p x B x a   , якщо  *
1i I x , та 

  *

* *

i
i X

p x B  , якщо  *
2i I x . 

З урахуванням цього та рівностей (23), (24) отримаємо співвід-
ношення (22). 

Теорему доведено. 

Двоїсте подання конуса внутрішніх напрямків деякої лебе-
гової множини цільової функції задачі відшукання величини (9). 

Нехай *x V  і, отже,  * *,...,x x D . Позначимо через  * *,...,Q x x  

таку лебегову множину цільової функції p  задачі відшукання вели-

чини (6) (див. (21)):  

        * * * *
1 1,..., ,..., : ,..., ,...,m

m mQ x x x x X p x x p x x   . 

Будемо позначати через     * * * *,..., , ,...,Q x x x x  – конус вну-

трішніх напрямків для множини  * *,...,Q x x  з точки  * *,...,x x . При 

цьому точка  1,..., m
my y X  належить     * * * *,..., , ,...,Q x x x x , 

якщо існує окіл  1,..., mO y y  точки  1,..., my y  простору  , m

m

X
X   

та число 0   такі, що      * * * *
1,..., ,..., ,...,mx x t z z Q x x   для всіх 

 0,t   та    1 1,..., ,...,m mz z O y y (див., наприклад, [5, с.2]). 

Теорема 5. Нехай *x V  і, отже,  

 * *,...,x x D ,     * *
1 1,..., : iI x i m a x   , 

    * *
2 1,..., : iI x i m a x   ,  * *,...,Q x x   . 
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Справедлива рівність  

 

    

 
 

 
 

 
   

 
   

* *
* *

1

* * *
* * ** *

2 1 2

* * * *

1

,..., , ,...,

,..., : max

max max 0 .

iXi

iX Xi i

m
m i

f B x a
i I x

i i i if B f B x a
i I x i I x i I x

Q x x x x

y y X f y

f y f y y

 


  
  

 




  





    




  

 (25) 

Доведення. Оскільки функція  1,..., mp x x ,  1,..., m
mx x X , є 

опуклою та неперервною на лінійному нормованому просторі 

 , m

m

X
X   (див. наслідок 1), то згідно з твердженням 6.9.1 [5, c. 383] 

 
    

      

* * * *

* *
1 1

,..., , ,...,

,..., : ,..., 0, ,..., .m
m m

Q x x x x

y y X y y p x x 

 

   

 (26)  

Відповідно до теореми 6.4.8 [5, c. 354] 

    
 

 
* *

* *
1 1

,...,
,..., , ,..., max ,...,m m

p x x
p x x y y y y






  ,  1,..., m
my y X . (27) 

Зі співвідношень (26), (27) випливає, що  

 
    

       

* * * *

* *
1 1

,..., , ,...,

,..., : ,..., , ,..., 0 .m
m m

Q x x x x

y y X p x x y y

 

  

 (28) 

З рівностей (22) і (28) одержуємо співвідношення (25). 
Теорему доведено. 

Конус граничних напрямків для множини D  з точки 

 * *,....,x x D . В подальшому будемо використовувати також по-

няття конуса   * * *, ,...,D x x  граничних напрямків для множини D  

з точки  * *,...,x x D . При цьому точка    1,..., , m

m
m X

y y X   на-

лежить   * * *, ,...,D x x  тоді і тільки тоді, коли для будь-якого око-

лу  1,..., mO y y  точки  1,..., my y  простору  , m

m

X
X   та будь-якого 

числа 0   існують точка    1 1,..., ,...,m mz z O y y  та число 

 0,   такі, що 



Математичне та комп’ютерне моделювання 

44 

     * * * *
1 1,..., ,..., ,...,m mx x z z x z x z D        

(див., наприклад, [5, с. 3]). 
Справедливе таке твердження. 

Твердження 2. Для того щоб точка  1,..., my y  належала 

  * * *, ,...,D x x , необхідно і достатньо, щоб існувала послідовність то-

чок nx V , 1,2,...n  , та додатна нескінченно мала числова послідовніс-

ть n  ( 0n  , 1,2,...n  , lim 0n
n




 ) такі, що 
*

lim 0n
i

n
n i

x x
y




  , 

тобто 
*

nn
i

n

x x
y




  у розумінні норми 

i
 , 1,i m . 

Доведення. Необхідність. Нехай точка  1,..., my y  із mX  нале-

жать   * * *, ,...,D x x . Візьмемо 0n  , 1,2,...n  , lim 0n
n




 . Тоді 

для околу  

       1 1 1 1

1

,..., ,..., : ,..., ,...,
m

m

n m m m m i i niX
i

O y y z z z z y y z y 


  
     
  

   

та 0n   існують    1 1,..., ,...,n n
m n mz z O y y  (

1

m
n
i i n

i
i

z y 


  ) та 

0 n n    такі, що  

     * * * *
1 1,..., ,..., ,...,n n n n

n m mx x z z x z x z D       , 

тобто існує таке nx V , що * *
1 ...n n

n n m nx z x z x      . 

Звідси випливає, що 
*

n n
i

n

x x
z




 , 1,i m , причому  

*

1 1

m m
n n
i i i n

i
ni i i

x x
z y y 

 


     , 1,2,...n  . 

З урахуванням того, що lim 0n
n




 , з останньої нерівності одер-

жуємо, що 
*

lim n
i

n
n

x x
y




  у розумінні норми 

i
 . 

Отже, доведено, що коли     * * *
1,..., , ,...,my y D x x , то іс-

нують такі послідовності nx V , 1,2,...n  , 0n  , 1,2,...n  , 
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lim 0n
n




 , що 
*

lim 0n
i

n
n i

x x
y




  , тобто, що 

*
nn

i
n

x x
y




  у 

розумінні норми 
i

 , 1,i m . 

Необхідність доведено. 

Достатність. Нехай для деякої послідовності nx V , 1,2,...n  , 

та додатної нескінченно малої послідовності n , 1,2,...n  , маємо, що  

 
*

lim 0n
i

n
n i

x x
y




  , 1,i m , (29) 

тобто 
*

nn
i

n

x x
y




  у розумінні норми 

i
 . Доведемо, що 

    * * *
1,..., , ,...,my y D x x . 

Вибираємо довільний окіл  1,..., mO y y  точки  1,..., my y  ліній-

ного нормованого простору  , m

m

X
X   та число 0  . Оскільки 

внаслідок (29)  

 
* * *

1

1

,..., ,..., 0
m

m
n n n

m i
n n ni iX

x x x x x x
y y y

  

   
     

 
  

при n , то існує 1
0n N , що  

  
* *

1,..., ,...,n n
m

n n

x x x x
O y y

 

  
  

 

, 1
0n n . (30) 

Оскільки lim 0n
n




 , то існує 2
0n N , що  

 0 n   , 2
0n n . (31) 

Покладемо  1 2
0 0 0max ,n n n . Тоді для 0n n  виконується спів-

відношення (30), (31). Візьмемо будь-яке 0n n . Згідно з (30), (31)  

   
* *

1 1,..., ,..., ,...,n n n n
m m

n n

x x x x
z z O y y

 

  
   
 

,  0,n   

та 

   

   

* *
1

* *
1

,..., ,...,

,..., ,..., .

n n
n m

n n
m n n

x x z z

x z x z x x D



 

 

    
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Це й означає, що     * * *
1,..., , ,...,my y D x x . 

Достатність доведено. 

Теорему доведено. 

Необхідна умова екстремальності елемента *x V  для задачі 

відшукання величини (1). 

Теорема 6. Нехай *x V ,     * *
1 1,..., : iI x i m a x   , 

    * *
2 1,..., : iI x i m a x   . Для того щоб елемент *x  був екст-

ремальним елементом (узагальненою точкою Штейнера) для задачі 

відшукання величини (1), необхідно, щоб для кожного 

    * * *
1,..., , ,...,my y y D x x   існували функціонали *

*

i

y
i X

f B , 

1,i m , такі, що 

    
*

*

* * *max
Xi

y
i i i i

i f B
x a f x a f x a


     ,  *

1i I x , (32) 

  
1

0
m

y
i i

i

f y


 . (33) 

Доведення. Нехай  

        * * * *
1 1,..., ,..., : ,..., ,...,m

m mQ x x x x X p x x p x x   ,  

де, як і вище, p  є цільовою функцією задачі відшукання величини (9). 

Розглянемо випадок, коли  * *,...,Q x x   . 

Оскільки функція  1,..., mp x x ,  1,..., m
mx x X , є опуклою на 

mX  та неперервною на лінійному нормованому просторі  , m

m

X
X   

(див. наслідок 1), то згідно з теоремою 1.3.4 [5, c. 10] 

    * * * *,..., , ,...,Q x x x x   . Внаслідок того, що за умовою теоре-

ми *x  є екстремальним елементом для величини (1),  * *,....,x x  є 

екстремальним елементом для величини (9) (див. теорему 3). Звідси 

випливає, що  

        * * * * * * *,..., , ,..., , ,...,Q x x x x D x x    . (34) 

Дійсно припустимо, що співвідношення (34) не виконується. 

Тоді існує     * * *
1,..., , ,...,my y D x x , що  
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      * * * *
1,..., ,..., , ,...,my y Q x x x x .  

Згідно з означенням     * * * *,..., , ,...,Q x x x x  існує окіл 

 1,..., mO y y  точки  1,..., my y  лінійного нормованого простору 

 , m

m

X
X   та число 0   такі, що  

     * * * *
1,..., ,..., ,...,mx x z z Q x x  ,  0,  ,  

    1 1,..., ,...,m mz z O y y . (35) 

Згідно з означенням конуса граничних напрямків   * * *, ,...,D x x  

існують    1 1,..., ,...,m mz z O y y    та  0,   такі, що 

 
     

 

* *
1

* *
1

,..., ,..., ,...,

,..., , де .

m

m

x x x x z z

x z x z D x V



 

     

       

 (36) 

З (35) і (36) випливає, що    * *,..., ,...,x x D Q x x    . 

Тоді  

     

     

1

* * * *
1

,..., ,..., ,...,

,..., ,..., ,..., ,

m

m

m X

m
X

p x x a a x x

a a x x p x x

     

  
 

що суперечить екстремальності точки  * *,....,x x  для величини (9). 

Одержана суперечність доводить, що має місце рівність (34). Тому для 

кожного     * * *
1,..., , ,...,my y y D x x   справедливе співвідношен-

ня       * * * *
1,..., ,..., , ,...,my y y Q x x x x  . Згідно з теоремою 5 тоді 

для кожного     * * *
1,..., , ,...,my y y D x x   виконується нерівність: 

 

 
 

 
 

 

 
 

 
 

 

** *
* * **

1 2

* *

1 2
1

max max

0,

i XX ii

i i
f Bf B x a

i I x i I x

m
y y y

i i i i i i

ii I x i I x

f y f y

f y f y f y

 
 

 

 

   

 

  
 (37) 

де      * *

* * * * *
1 2, ; , .

i i

y y
i i iX X

f B x a i I x f B i I x      (38) 
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З співвідношення (38) випливає, що функціонали *

* , 1,
i

y
i X

f B i m  , 

і для них виконується співвідношення (32), а зі співвідношень (37) випли-
ває, що для цих функціоналів справедлива нерівність (33). 

У розглядуваному випадку теорему доведено. 
Переконаємося, що теорема справедлива і у випадку, коли 

 * *,...,Q x x   . У цьому випадку для кожного  1,..., m
mx x X  

   * *
1,..., ,...,mp x x p x x . Тому для будь-якого  1,..., m

my y X  та 

0t   має місце нерівність       * * * *
1,..., ,..., ,...,mp x x t y y p x x  . 

Звідси випливає, що  

 

    
      

* *
1

* * * *
1

0,
0

,..., , ,...,

,..., ,..., ,...,
lim 0,

m

m

t
t

p x x y y

p x x t y y p x x

t


 

 
 

 (39) 

 1,..., m
my y X .  

З урахуванням нерівності (39) та теореми 4 робимо висновок, що 

співвідношення (37), (38) справедливі для всіх  1,..., m
my y X . 

Звідси випливає справедливість співвідношень (32), (33) для всіх 

 1,..., ,m
my y X  зокрема для     * * *

1,..., , ,...,my y D x x . 

Теорему доведено. 

Достатня умова екстремальності елемента *x V  для задачі 

відшукання величини (1). 

Теорема 7. Нехай в задачі відшукання величини (1) *x V , 

    * *
1 1,.. : ,iI x i m a x        * *

2 1,.. : iI x i m a x   . Якщо для 

будь-якого x V  існують функціонали *

*

i

x
i X

f B , 1,i m , такі, що  

    
*

*

* * *max
Xi

x
i i i i

i f B
x a f x a f x a


     ,  *

1i I x , (40) 

  *

1

0
m

x
i

i

f x x


  , (41) 

то *x  є екстремальним елементом для величини (1). 

Доведення. Оскільки для будь-якого x V  функціонали 

*

*

i

x
i X

f B , 1,i m , а для  *
1i I x , крім того, виконуються співвід-

ношення (40), то  *

* *

i

x
i iX

f B x a  ,  *
1i I x . 
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З урахуванням цього, співвідношення (41) та рівності (22) одер-
жимо, що для всіх x V  

    

 
 

 
 

 
** *

* * **
1 2

* * * *

* *

,...., , ,....,

max max
i XX ii

f Bf B x a
i I x i I x

p x x x x x x

f x x f x x
 

 

   

     
 

 
 

 
 

 
* *

1 2

* * *

1

0
m

x x x
i i i

ii I x i I x

f x x f x x f x x
 

         , 

тобто для будь-якого x V  

           * * * * * * * *,...., , ,...., ,...., , ,...., ,...., 0p x x x x x x p x x x x x x      . 

Отже, для всіх x V  

      * * * *0 ,...., , ,...., ,....,p x x x x x x    

         * * * * * *

0

,..., ,...., ,...., ,...,
inf
t

p x x t x x x x p x x

t

  
   

         * * * * * *,..., 1 ,...., ,...., ,...,

1

p x x x x x x p x x  
   

   * *,...., ,..., .p x x p x x   

Звідси випливає, що для всіх x V    * *,..., ,..., .p x x p x x  Це 

означає, що  * *,...,x x  є екстремальним елементом для величини (9). 

Згідно з теоремою 3 *x  є екстремальним елементом для величини (1). 

Теорему доведено. 

Критерій екстремальності елемента *x V  для задачі від-

шукання величини (1). 

Теорема 8. Нехай в задачі відшукання величини (1) *x V  та 

D  є * -множиною відносно  * *,...,x x , тобто 

        * * * * * * *,..., ,..., ,..., , ,...,x x x x x x x x D x x       

для всіх  ,...,x x D  (для всіх x V ) (див., наприклад, [6]). 

Для того щоб елемент *x  був екстремальним елементом (узагаль-

неною точкою Штейнера) для величини (1) в цьому випадку, необхідно і 

достатньо, щоб для будь-якого x V  існували функціонали *

*

i

x
i X

f B  

1,i m , для яких виконуються співвідношення (40), (41) теореми 7. 
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Доведення. Необхідність. Нехай *x  є екстремальним елемен-

том для величини (1) і D  є * -множиною відносно  * *,...,x x , тобто 

для всіх  ,...,x x D ( x V ) 

        * * * * * * *,..., ,..., ,..., , ,...,x x x x x x x x D x x     . 

Згідно з теоремою 6 для     * * * * *,..., , ,...,y x x x x D x x     

існують функціонали 
 * *

*

,..., *

i

x x x xy x
i i i X

f f f B
 

   , 1,i m , такі, що  

   
*

*

* * *max
Xi

x
i i i i

i f B
x a f x a f x a


     ,  *

1i I x , 

 *

1

0
m

x
i

i

f x x


  . 

Необхідність доведено. 

Достатність. В достатності дано, що для будь-якого x V  іс-

нують функціонали *

*

i

x
i X

f B , 1,i m , для яких виконуються спів-

відношення (40), (41) теореми 7. Згідно з цією теоремою *x  є екстре-

мальним елементом для величини (1). 

Достатність доведено. 

Теорему доведено. 

Як відомо, множину V  лінійного над полем дійсних чисел прос-

тору X  називають: 

1)  -множиною відносно *x V , якщо 

       * *0 0,x V x x x V             

(див., наприклад, [7]); 

2) зірковою відносно *x V , якщо  

      *0,1 1x V x x V          

(див., наприклад, [7]); 

3) опуклою множиною, якщо  

     1 2 1 2, 0,1 1x x V x x V           

(див., наприклад, [4, c. 31]). 

Відомо (див., наприклад, [7]), що зіркова відносно *x V  мно-

жина V  є  -множиною відносно *x , а опукла множина V  є зірко-

вою відносно кожного свого елемента. 
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Наслідок 2. Нехай в задачі відшукання величини (1) *x V  та 

V  є  -множиною відносно *x V  (зірковою відносно *x , опуклою 

множиною). Для того щоб елемент *x  був екстремальним елемен-

том (узагальненою точкою Штейнера) для величини (1) в цьому 

випадку, необхідно і достатньо, щоб для будь-якого x V  існували 

функціонали *

*

i

x
i X

f B  1,i m , для яких виконуються співвідношен-

ня (40), (41) теореми 7. 

Доведення. Нехай V  є  -множиною відносно *x V . Переко-

наємося, що D  є * -множиною відносно  * *,...,x x . Нехай 

 ,...,x x  – довільна точка множини D . Розглянемо довільний окіл 

    * *,..., ,...,O x x x x  точки    * *,..., ,...,x x x x  простору 

 , m

m

X
X   та довільне 0  . Оскільки x V  та V  є  -множиною 

відносно *x V , то існує  0,   таке, що  * *x x x V   . Тому 

    * * * *,...,x x x x x x D      . Крім того, 

    
      

* * * *

* * * *

,...,

,..., ,..., ,..., .

x x x x x x

x x x x x x

 



    

  

 

Отже, для довільного околу     * *,..., ,...,O x x x x  точки 

   * *,..., ,...,x x x x  простору  , m

m

X
X   та довільного 0  , існує 

точка    * *,..., ,...,x x x x  цього околу та  0,   такі, що 

      * * * *,..., ,..., ,...,x x x x x x D   .  

Це означає, що       * * * * *,..., ,..., , ,...,x x x x D x x   для всіх 

 ,...,x x D . Тому D  є * -множиною відносно  * *,...,x x . За цих 

умов згідно з теоремою 8 елемент *x V  буде екстремальним елеме-

нтом для величини (1) тоді і тільки тоді, коли для будь-якого x V  

існують функціонали *

*

i

x
i X

f B  1,i m , для яких виконуються спів-

відношення (40), (41) теореми 7. 
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Для цього випадку наслідок доведено. 

Справедливість наслідку для зіркової відносно *x V  множини 

V  та опуклої множини V  випливає з того, що ці множини є  -мно-

жинами відносно *x V . 

Наслідок доведено. 

Зауважимо, що оскільки відповідно до теореми 1 екстремальні 
елементи для величин (1) та (3) співпадають, то встановлені вище 

умови екстремальності елемента *x V  для задачі відшукання вели-

чини (1) є також умовами екстремальності цього елемента для задачі 
відшукання величини (3).  

Висновки. Для задачі відшукання узагальненої точки Штейнера 
кількох замкнених куль полінормованого простору відносно множи-
ни цього простору встановлено необхідні, достатні умови та критерії 
екстремальності допустимого елемента цієї задачі. 
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THE CONDITIONS OF EXTREMALITY OF AN ADMISSIBLE 
ELEMENT IN THE PROBLEM OF FINDING A STEINER  
POINT OF SEVERAL CLOSED BALLS OF A CERTAIN 

POLYNORMED SPACE WITH RESPECT TO A SET  
OF THIS SPACE BASED ON THE DUAL REPRESENTATION  
OF THE DIRECTIONAL DERIVATIVE OF THE EQUIVALENT 

BEST-APPROXIMATION PROBLEM 

As is well known (see, for example, [1, p. 47]), the classical Steiner 

problem in a linear normed space consists in finding, within a given set of 

this space, a point (the Steiner point) for which the sum of distances to 

several fixed points of the space is minimal, that is, does not exceed the 

sum of distances from the given points to any other point of this set. 

In practice, one often encounters the so-called «weighted» Steiner 

problems, in which the distances mentioned above are assigned various 

«weight» characteristics (see, for example, [1, p. 47]). 

If, in a «weighted» Steiner problem, the «weighted distances» between 

the fixed points of a linear normed space and the points of its set are re-

placed by distances generated, generally speaking, by different norms de-

fined on the considered linear space, then we obtain a Steiner problem in a 

polynormed space, which is a generalization of the «weighted» Steiner 

problem (see, for example, [2]). 

In paper [2], for the case when the set of a polynormed space with re-

spect to which the generalized Steiner problem is considered is convex, 

duality relations and extremality conditions for an admissible solution of 

this problem are established. These conditions are based on a duality rela-

tion that generalizes the known results obtained for the problem of best ap-

proximation of an element of a linear normed space by a convex set of this 

space (see, for example, [3]). 

The problem considered in the present work is obtained by replacing, 

in the generalized Steiner problem in a polynormed space, the fixed points 

of a linear space over the field of real numbers with closed balls deter-

mined by the corresponding norms of this space. As distances between the 

resulting balls and the points of a fixed set of the linear space, we take the 

Hausdorff distances between them generated by the corresponding norms. 

Key words: the polynormed space, the closed balls of a polynormed 

space, the Hausdorff distance, the generalized Steiner point, the extremal 

element, the extremality conditions of an element. 

Отримано: 8.12.2025 
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