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РАМСЕЇВСЬКІ ЧИСЛА ДЛЯ ПРЯМОКУТНИКІВ  
У БАГАТОКОЛЬОРОВИХ РОЗФАРБУВАННЯХ 

У статті розглянуто рамсеївський підхід до аналізу дискрет-
них двовимірних структур, у яких за зростання розмірів неми-
нуче виникають регулярні підконфігурації. Вихідною є ідея тео-
рії Рамсея про те, що в достатньо великій системі «повний хаос» 
неможливий: незалежно від способу побудови обов’язково 
з’являється впорядкована підструктура. Досліджується багато-
кольорове заповнення прямокутної ґратки a × b із забороною 
однотонного осьово-орієнтованого прямокутника, який розгля-
дається як базовий локальний шаблон упорядкування. 

Уведено порогові характеристики, що описують межі існу-
вання допустимих конфігурацій: встановлюються області па-
раметрів, де заборонений шаблон ще можна уникати (існують 
контрприклади), та області, де його поява стає гарантованою 
для будь-якого розфарбування. Для дво- та трикольорових ви-
падків отримано оцінки, пов’язані з площею максимальних не-
тривіальних контрприкладів, а також визначено мінімальні за 
площею прямокутники, які вже не можуть бути контрприкла-
дами. Таким чином, результати задають критичні масштаби, 
після яких локальна регулярність проявляється неминуче. 

Одержані оцінки мають прикладний сенс у задачах, де ва-
жливо контролювати появу повторюваних локальних конфігу-
рацій у матричних даних. Зокрема, вони можуть бути викори-
стані для математичного моделювання та побудови матриць 
призначень у схемах розподілу «час-канал» (рядки відповіда-
ють часовим слотам, стовпці – каналам або ресурсам, колір – 
класу/стану), щоб зменшувати небажані повтори та штучні ко-
реляції. Крім того, запропонований підхід придатний для фор-
мування контрольованих тестових масивів у задачах виявлен-
ня шаблонів у двовимірних даних (матрицях подій, картах 
спостережень, зображеннях), де потрібна гарантована відсут-
ність заданого типу регулярності до певного порога розмірів. 

Ключові слова: теорія Рамсея, рамсеївські числа, бага-
токольорові розфарбування.  
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Вступ. Досліджується задача рамсеївського типу для двовимір-
них дискретних структур. Розглядається прямокутна таблиця розміру 
a × b, клітини якої розфарбовуються у n кольорів, і ставиться питан-
ня: за яких параметрів можна уникнути появи чотирьох клітин одно-
го кольору, центри яких утворюють осьово-орієнтований прямокут-
ник. Такий прямокутник інтерпретується як впорядкована підструк-
тура, а конфігурації, де її немає, – як контрприклади, що існують ли-
ше до певного «порога» розмірів. Для опису цього порогового явища 
вводяться характеристики, які фіксують максимальні площі нетривіа-
льних контрприкладів і мінімальні розміри прямокутників, для яких 
контрприклади вже неможливі. Далі виконано окремий аналіз двоко-
льорового та трикольорового випадків: наведено конструкції розфар-
бувань, встановлено відповідні межі та сформульовано наслідки для 
подальших оцінок при більшій кількості кольорів.  

1. Основні означення та результати теорії Рамсея. Розглянемо 
простий неорієнтований граф без петель і кратних ребер. 

Означення 1.1. Нехай R(a, b) – найменше натуральне число n 
таке, що в будь-якому графі на n вершинах обов’язково знайдеться 
або повний підграф Ka (тобто a вершин, попарно з’єднаних ребрами), 
або незалежна множина з b вершин (тобто b вершин без ребер між 
жодною парою) [2]. 

Еквівалентно, R(a, b) – найменше n, для якого при будь-якому 
двокольоровому розфарбуванні ребер повного графа Kn обов’язково 
існує однотонний підграф K_a першого кольору або однотонний під-
граф Kb другого кольору [2]. 

Теорема 1.1. R(3, 3) = 6. У будь-якій компанії з шести людей знай-
деться або троє попарно знайомих, або троє попарно незнайомих [4]. 

Твердження 1.2. Для всіх натуральних a: R(a, 1) = 1, R(a, 2) = a [2].  

Твердження 1.3. R(a, b) ≤ R(a – 1, b) + R(a, b – 1) [2]. 

Твердження 1.4. R(a, b) ≤ 1
2

a
a bС 
   [2].  

Теорема Рамсея. Для будь-яких натуральних чисел a і b існує 
таке натуральне число R(a, b), що при будь-якому розфарбуванні 
ребер повного графа KR(a, b) у два кольори обов’язково знайдеться або 
однотонний повний підграф Ka першого кольору, або однотонний 
повний підграф Kb другого кольору [2].  

2. Рамсеївські числа для прямокутників у багатокольорових 
розфарбуваннях. Розглянемо відому задачу рамсеївського типу. 

Задача 2.1. Кожна клітинка нескінченного зошита пофарбована 
в один із n кольорів. Доведіть, що знайдуться чотири клітинки одного 
кольору, центри яких утворюють прямокутник зі сторонами, парале-
льними лініям зошита. 
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Надалі вважатимемо розмір клітин 1 × 1, а прямокутники – 
осьово-орієнтованими (сторони паралельні до ліній зошита). 

Означення 2.1. Позначимо через Sₙ площу (тобто кількість кліти-
нок) найменшого прямокутника, в якому при довільному n-кольоровому 
розфарбуванні завжди знайдеться чотири клітинки одного кольору, 
центри яких утворюють осьово-орієнтований прямокутник.  

Означення 2.2. Назвемо контрприкладом прямокутник із n-
кольоровим розфарбуванням клітин, у якому немає чотирьох кліти-
нок одного кольору у вершинах осьово-орієнтованого прямокутника. 

Лема 2.1. Нехай n ∈ ℕ. Тоді виконується оцінка:  
Sₙ ≤ (n + 1)·(nn + 1 + 1). 

Доведення. Розглянемо прямокутник розміру (n + 1) × 
(nn + 1 + 1). У ньому є nn + 1 + 1 стовпців, кожний висотою n + 1 клітин-
ка. Зафіксуємо набір із n + 1 горизонтальних рядків. Для кожного 
стовпця подивімося на «візерунок» кольорів у цих рядках – вектор 
довжини n + 1 над множиною з n кольорів. Таких візерунків не біль-
ше, ніж nn + 1. Отже, за принципом Діріхле, серед наших nn + 1 + 1 сто-
впців знайдуться два з однаковим візерунком. У спільному візерунку 
є n + 1 позиція та лише n кольорів, тож знову за принципом Діріхле 
деякий колір зустрічається принаймні двічі. Це означає, що існують 
дві різні горизонтальні лінії, на перетинах з кожним із двох вибраних 
стовпців стоятимуть клітинки одного й того самого кольору. Отже, 
ми отримали чотири клітинки одного кольору у вершинах осьово-
орієнтованого прямокутника. Лему 2.1 доведено. 

Наслідок (існування числа Sₙ). Для кожного натурального n 
число Sт існує, є визначеним і скінченним. 

Доведення. За лемою 2.1 існує конкретний прямокутник R₀ роз-
міру (n + 1) × (nⁿ ⁺ ¹ + 1), у якому будь-яке n-кольорове розфарбування 
вже містить монохроматичний осьово-орієнтований прямокутник. 

Позначимо S = (n + 1)·(nⁿ ⁺ ¹ + 1). Розглянемо множину M усіх 
прямокутників з натуральними довжинами сторін, площа яких не 
перевищує S, та для яких кожне n-розфарбування містить шуканий 
монохроматичний осьово-орієнтований прямокутник. Оскільки 
R₀ ∈ M, то множина M не порожня. 

Прямокутники з множини M мають натуральні площі, які не пе-
ревищують S. Відомо, що з будь-якої непорожньої підмножини нату-
ральних чисел можна вибрати найменший елемент. Позначимо через 
Sₙ площу найменшого прямокутника з множини M. Таким чином, Sₙ 
існує і є скінченним. Наслідок доведено. 

Означення 2.3. Позначимо через Wₙ максимальну площу прямо-
кутника-контрприкладу обидві його сторони строго більші за n, 
тобто min{a, b} > n для розмірів a × b. 
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Теорема 2.1. Для кожного n ≥ 2 виконується Wn ≥ 
  

2
1

2

n n 
.  

Доведення. Побудуємо явний контрприклад розміру 

(n + 1) × n
2

1nC  . Розглянемо стовпці висоти n + 1. Зафіксуємо колір c і 

невпорядковану пару рядків {i, j} (1 ≤ i < j ≤ n + 1). Побудуємо стов-
пець, у якому клітинки на рядках i та j мають колір c, а решта n − 1 
рядків пофарбовані в усі інші n − 1 кольорів попарно різні. Кількість 

різних пар {i, j} дорівнює 
2

1nC  , а різних кольорів – n, отже маємо 

n
2

1nC  , стовпців. За цією конструкцією для кожного кольору c і кож-

ної пари рядків {i, j} існує рівно один стовпець, де c повторюється на 
{i, j}.Зауважимо, що клітинки інших кольорів в стовпці не важливі 
для нашої конструкції. Тому не існує двох різних стовпців із тією 
самою парою {i, j}, пофарбованою в один і той самий колір c. Але 
саме така ситуація є необхідною і достатньою для появи монохром-
ного прямокутника кольору c (дві однакові позиції в парі рядків на 

двох стовпцях). Отже, побудований (n + 1) × (n
2

1nC  ) прямокутник – 

контрприклад. Його площа дорівнює  

(n + 1)·n
2

1nC   = (n + 1)·n·((n + 1)n / 2) = 
  

2
1

2

n n 
.  

Теорему 2.1 доведено. 

Теорема 2.2. Для кожного n ≥ 2 виконується  

Sₙ ≤ (n + 1) × (n·
2

1nC   + 1). 

Доведення. Розглянемо прямокутник розміру (n + 1) × (n·
2

1nC   + 1). 

Кожен стовпець довжини n + 1 містить принаймні одну пару клітин одно-
го кольору (за принципом Діріхле, бо n + 1 клітин і лише n кольорів). За 

теоремою 2.1 різних «типів» таких пар – не більше ніж n·
2

1nC  : тип ви-

значається вибором кольору c та невпорядкованої пари рядків {i, j}. Оскі-
льки стовпців на один більше, ніж можливих типів, за принципом Діріхле 
знайдуться два стовпці, що мають однаковий тип (той самий колір на тій 
самій парі рядків). Тоді чотири відповідні клітинки утворюють монохро-
мний осьово-орієнтований прямокутник. Теорему 2.2 доведено. 

Розфарбування у два кольори. 

Лема 2.2. Якщо у прямокутнику 3 × 5 існує однокольоровий сто-
впець, то в цьому прямокутнику знайдуться чотири клітинки одного 
кольору у вершинах осьово-орієнтованого прямокутника. 

Доведення. Нехай у деякому стовпці всі три клітинки чорні. 

Якщо в іншому стовпці є щонайменше дві чорні клітинки на тих са-
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мих двох рядках, то разом ці два стовпці утворюють чорний прямо-

кутник. Інакше в кожному з решти чотирьох стовпців не більш як 

одна чорна клітинка, отже принаймні дві білі. Для кожного такого 

стовпця зафіксуємо пару рядків, у яких стоять білі клітинки. Можли-

вих пар з трьох рядків рівно 2
3С  = 3, а стовпців – 4; за принципом 

Діріхле двом стовпцям відповідає та сама пара, і на цих двох рядках 

одержуємо білий прямокутник. Лему 2.2 доведено. 

Лема 2.3. S₂ ≤ 25. 

Доведення. Доведемо, що в квадраті 5 × 5 будь-якого двокольоро-

вого розфарбування завжди є монохроматичний осьово-орієнтований 

прямокутник. Розглянемо перший рядок; у ньому принаймні три клітин-

ки одного кольору (за принципом Діріхле). Нехай це стовпці c₁, c₂, c₃ і 

колір – чорний. Розглянемо решту чотири рядки, але лише в стовпцях c₁, 

c₂, c₃. Якщо в якомусь із цих рядків у двох із c₁, c₂, c₃ стоять чорні клітин-

ки, то разом із першим рядком маємо чорний прямокутник. Інакше в 

кожному з чотирьох рядків у c₁, c₂, c₃ не більше однієї чорної, отже при-

наймні дві білі клітинки. Є лише три пари з {c₁, c₂, c₃}; тому два рядки 

збігаються за парою білих, і на цих двох рядках та двох стовпцях маємо 

білий прямокутник. Лему 2.3 доведено. 

Теорема 2.3. S₂ = 21. 

Доведення. Верхня межа S₂ ≤ 21. З теореми 2.2 маємо загальну 

оцінку  

Sₙ ≤ (n + 1) × (n·
2

1nC   + 1), 

Підставивши n = 2, дістаємо: 

S2 ≤ (2 + 1) × (2·
2
2 1C  + 1) = 21. 

Отже, в 3 × 7 завжди існує шуканий прямокутник, і S₂ ≤ 21. 

Доведемо, що S₂ ≥ 21. Для цього покажемо, що всі прямокутники, 

які складаються менше ніж з 21 клітини, можна розфарбувати так, щоб 

вони не містили шуканого монохромного прямокутника. Для цього роз-

глянемо декілька варіантів меншої сторони цього прямокутника.  

Випадок прямокутник 2 × n (зокрема 2 × 10): шахівниця 

Побудова: рядок 1 – 0101…, рядок 2 – 1010…. Для будь-якого 

стовпця клітини різного кольору, тож монохромний прямокутник не 

утворюється. 

          

          

Рис. 1. 2×10 (шахове розфарбування) 
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Побудуємо контрприклад: 4 × 6 (усі 4-бітові стовпці ваги 2) 
Візьмемо 6 стовпців, кожен із яких має рівно дві одиниці 

( 2
4С = 6): 1100, 1010, 1001, 0110, 0101, 0011 (згори вниз читання). Для 

будь-якої пари рядків існує рівно один стовпець з «11» і рівно один зі 
«00», отже не буває двох різних стовпців із однаковою парою «11» чи 
«00», і монохроматичного прямокутника немає. 

      

      

      

      

Рис. 2. 4 × 6 (0 = білий, 1 = чорний, усі стовпці ваги 2) 

Побудуємо контрприклад: 3 × 6. Якщо з попередньої конструкції 
вилучити 4-й рядок, дістaємо 3 × 6 зі стовпцями 110, 101, 100, 011, 
010, 001. Для кожної пари рядків «11» і «00» трапляються не більш 
ніж по одному разу – монохромного прямокутника немає. 

      

      

      

Рис. 3. 3 × 6 (отримано з 4 × 6 вилученням рядка) 

Побудуємо контрприклад 4 × 5 як підпрямокутник 4 × 6 (вилучаємо 
один стовпець) Вилучивши будь-який один стовпець із 4 × 6 (наприклад, 
1100), отримуємо 4 × 5. Для кожної пари рядків тепер щонайбільше один 
стовпець має «11» і щонайбільше один – «00», отже дублювань, що 
створюють монохромний прямокутник, не виникає. 

     

     

     

     

Рис. 4. 4 × 5 (отримано з 4×6 вилученням стовпця) 
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Розфарбування прямокутників з площею меншою 21: 

 1 × n – тривіально (немає двох рядків і двох стовпців). 

 2 × n (зокрема 2 × 10) – шахівниця (рис. 1). 

 3 × n (n ≤ 6) – підпрямки 3 × 6 (рис. 3). 

 4 × n (n ≤ 5) – підпрямки 4 × 5 (Рис. 4). 

 За симетрією m × n ↔ n × m це охоплює всю множину площ mn ≤ 20. 

Кожен прямокутник площею. менше 21 можна розфарбувати 
так, що він не містить чотири клітинки одного кольору у вершинах 
осьово-орієнтованого прямокутника. 

Отже, поєднавши верхню та нижню межі, маємо S₂ = 21. Теоре-

му 2.3 доведено.  

Теорема 2.4. W₂ = 24. 

Доведення. За означенням W₂ – це найбільша площа прямокут-
ника-контрприкладу для двох кольорів за умови, що обидві сторони 
строго більші за 2 (тобто не менші за 3). 

1. Існування (нижня межа). У теоремі 2.3 побудовано контрприклад 
розміру 4 × 6 (а також симетричний 6 × 4), тож W₂ ≥ 4·6 = 24. 

2. Оптимальність (верхня межа). Покажемо, що контрприкладів 
площі більше або рівних 25 не існує. Нехай a × b – прямокутник із 
a ≤ b та a ≥ 3 і ab ≥ 25. Розглянемо два підвипадки. 

Якщо a ≥ 5, то прямокутник містить підпрямокутник 5 × 5, який 
не є контрприкладом (за лемою 2.3). Тому a × b також не є контрпри-
кладом (монотонність за включенням). 

Якщо a ∈ {3, 4}, то з умови ab ≥ 25 випливає b ≥ 7. Такий пря-
мокутник містить підпрямокутник 3 × 7, який не є контрприкладом за 
теоремою 2.3. За монотонністю, a × b не є контрприкладом. 

Отже, жоден прямокутник із мінімальною стороною щонаймен-
ше 3 та площею не меншою 25 не є контрприкладом. Звідси W₂ ≤ 24. 
Разом з пунктом (1) маємо рівність W₂ = 24. Теорему 2.4 доведено. 

Розфарбування в три кольори.  

Теорема 2.5. S3 = 76. 

Доведення. Верхня межа S3 ≤ 76. З теореми 3 маємо загальну 
оцінку  

Sₙ ≤ (n + 1) × (n·
2

1nC   + 1). 

Підставивши n = 3, дістаємо: 

S3 ≤ (3 + 1)× (3· 2
3 1C   + 1) = 76. 

Отже, в 4 × 19 завжди існує шуканий прямокутник, і S3 ≤ 76. 
Покажемо, що кожен прямокутник площа якого не перевищує 75 

можна розфарбувати в три кольори так, щоб монохроматичного пря-
мокутника не було. Нехай a ≤ b та ab ≤ 75. Якщо a ≥ 9, то 
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ab ≥ 9⋅9 = 81 – неможливо; отже a ∈ {3, 4, 5, 6, 7, 8}. Достатньо наве-
сти явні контрприклади для максимальних при фіксованому a розмі-
рів a × ⌊75/ a⌋; тоді всі менші за b випадки покриваються спадковістю 
(підпрямокутники контрприкладу теж контрприклади). 

Максимальні розміри при площі не більше ніж 75: Розглянемо 

декілька варіантів для найменшої сторони прямокутника. 

a = 3 → 3 × 25; a = 4 → 4 × 18; a = 5 → 5 × 15; 

 a = 6 → 6 × 12; a = 7 → 7 × 10; a = 8 → 8 × 9. 

 
Прямокутник 3 × k 

 
Прямокутник 4 × 18 

 
Прямокутник 5 × 15 

 
Прямокутник 6 × 15 
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Прямокутник 7 × 10 

 
Прямокутник 8 × 9 

Звідси випливає, що всі прямокутники площі ≤ 75 є 3-розфар-

бовними без монохромного прямокутника, тобто S₃ ≥ 76. Поєднавши 

верхню та нижню межі, отримуємо S₃ = 76. Теорему 2.5. доведено. 

Теорема 2.6. W₃ = 108. 

Доведення. За означенням, W₃ – це найбільша площа прямокут-

ника-контрприкладу для трьох кольорів за умови, що обидві сторони 

строго більші за 3  

Неважко переконатися, що цей прямокутник є контрприклад (не 

містить монохроматичний осьово-орієнтований прямокутник) отже 

W₃ ≥ 9·12 = 108. 
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Оптимальність (верхня межа). Покажемо, що контрприкладів 

площі більшою 108 з мінімальною стороною щонайменше 4 не існує. 

 
Контрприклад 9 × 12 

Спершу, з теореми 2.5 випливає, що прямокутник 4 × 19 гаран-

товано містить монохроматичний прямокутник; отже 4 × 19 не є 

контрприкладом. Тому жоден прямокутник a × b з a ≥ 4 та b ≥ 19 не мо-

же бути контрприкладом (оскільки містить підпрямокутник 4 × 19). 

Далі розглянемо наступний граничний формат: 5 × 16. Покаже-

мо, що і він не є контрприкладом (а відтак не є ним жоден a × b з  

a ≥ 5, b ≥ 16). 

Лема 2.4. (про пари в одному стовпці висоти 5). У будь-якому 

стовпці висоти 5, пофарбованому у три кольори, існує принаймні дві 

монохроматичні пари клітин (тобто сумарно по кольорах не менше 

двох пар на п'ятьох рядках). 

Доведення. Справді, найменше число пар досягається при роз-

поділі 2 + 2 + 1 за кольорами; тоді кількість пар дорівнює 
2
2С + 2

2С + 2
1С  = 1 + 1 + 0 = 2. У випадках 3 + 1 + 1 або 4 + 1 + 0 або 

5 + 0 + 0 пар тільки більше. Лему 2.4 доведено.  

У прямокутнику 5 × 16 маємо 16 стовпців, отже загалом при-

наймні 16·2 = 32 монохроматичні пари. Кожна пара однозначно зада-

ється кольором c ∈ {1, 2, 3} та невпорядкованою парою рядків  

{i, j} ⊂ {1, 2, 3, 4, 5}. Можливих типів пар рівно 3× 2
5С  = 30. За прин-

ципом Діріхле серед наших щонайменше 32 пар знайдуться дві одна-

кові за типом (той самий колір на тій самій парі рядків). Оскільки в 



Математичне та комп’ютерне моделювання 

64 

межах одного стовпця для фіксованої пари рядків {i, j} і кольору c 

можливе щонайбільше одне співпадіння, ці дві однакові пари лежать 

у різних стовпцях і разом утворюють монохроматичний прямокут-

ник. Отже, 5 × 16 не є контрприкладом. 

Аналогічно доведемо, що 6 × 16 не є контрприкладом. Кожен 

стовпчик містить мінімум три пари. Тому загальна кількість пар в 

прямокутнику 3 × 16 = 48. Можливих типів пар рівно 3 × 2
6С  = 45. За 

принципом Діріхле серед наших щонайменше 48 пар знайдуться дві 

однакові за типом, які утворять монохроматичний прямокутник. За-

уважимо, що контрприкладом є прямокутник 6 × 15. Тобто число 16 в 

доведенні зменшити не можна.  

 

Доведемо, що 7×13 не є контрприкладом. Кожен стовпчик міс-

тить мінімум 5 пар. (A A A B B C C). Тому загальна кількість пар в 

прямокутнику 5 × 13 = 65. Можливих типів пар рівно 3 × 2
7С  = 63. За 

принципом Діріхле серед наших щонайменше 65 пар знайдуться дві 

однакові за типом, які утворять монохроматичний прямокутник. 

Доведемо, що прямокутники 8 × 13 та 9 × 13 не є контрприкла-

дами. Прямокутники 8 × 13 та 9 × 13 містять прямокутник 7 × 13, 

який не є контрприкладом. Тому прямокутники 8 × 13 та 9 × 13 не є 

контрприкладами.  

Лема 2.5. Прямокутник 10 на 11 не є контрприкладом. 

Доведення. Є 110 клітинок та 3 кольори тому за принципом Діріх-

ле одного кольору не менше 37 клітинок. Не зменшуючи загальності 

будемо вважати. що клітинок чорного кольору 37. В прямокутнику 11 

стовпців по 10 клітинок в кожному. Розподіляємо клітинки по 11 стовп-

цям, щоб мінімізувати кількість пар чорних клітинок. Тобто в 4 стовп-

цям по 4 клітинки та в 7 стовпцям по три клітинки (4 × 4 + 3 × 7 = 37.) 

Тобто пар чорних клітинок всього 4 × 2
4С  + 7 × 2

3С  = 45.  
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Усіх можливих пар також 2
10С  45. Тобто, якщо контрприклад іс-

нує то він містить всеможливі пари. Отже, кожна пара рядків мусить 

з’явитись рівно один раз. Оскільки в прямокутнику 10 рядків та 37 чо-

рних клітинок, то існує рядок в якому не більше 3 чорних клітинок. (Бо 

4 × 10 = 40 > 37). Нехай в першому рядку 4 чорних клітинки. Оскільки 

всі пари (1, 2), (1, 3), … (1, 10) мають бути накриті у стовпчиках в яких 

в першому рядку чорні клітинки знаходиться по 4 клітинки. Наприклад 

в стовпчиках (1, 2, 3, 4), (1, 5, 6, 7) (1, 8, 9, 10) чорні клітинки. Но є ще 

один стовпчик, який містить 4 чорних клітинки. Він точно не містить 

чорну клітинку в першому рядку. Бо одразу утвориться співпадіння 

пар. Тому за принципом Діріхле принаймні дві чорні клітинки потрап-

лять в одну з множин {2, 3, 4}, {5, 6, 7} {8, 9, 10} та ми одержимо од-

накові пари, тобто шуканий прямокутник. Отже, Прямокутник 10 на 11 

не є контрприкладом. Лему 2.5. доведено.  

Отже ми довели, що прямокутники 4 × 19, 5 × 16. 6 × 16, 7 × 13, 

8 × 13, 9 × 13, 10 × 11 не є контрприкладами. Будь-який прямокутник 

з натуральними сторонами більшими за три, та площею більшою за 

108 буде містити один з вище перерахованих прямокутників. Тому 

контрприкладу площею більшою за 108 не існує. Отже, W₃ = 108. Те-

орему 2.6 доведено.  

Висновки. В роботі досліджено задачу багатокольорових роз-

фарбувань прямокутних таблиць із забороною однотонного осьово-

орієнтованого прямокутника як прояву локальної регулярності. Для 

дво та трикольорових випадків визначено межі існування контрпри-

кладів: знайдено максимальні нетривіальні контрприклади за площею 

та мінімальні прямокутники, які вже не можуть бути контрприклада-

ми. Практичне значення полягає в можливості застосування отрима-

них конструкцій і оцінок у математичному моделюванні, аналізі та 

проєктуванні двовимірних дискретних структур із контрольованими 

забороненими шаблонами. 
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RAMSEY NUMBERS FOR RECTANGLES  
IN MULTICOLOUR COLOURINGS 

The article considers a Ramsey-theoretic approach to the analysis of 

discrete two-dimensional structures in which regular subconfigurations in-

evitably emerge as the size grows. The starting point is the central idea of 

Ramsey theory that in a sufficiently large system «complete chaos» is im-

possible: regardless of how the structure is constructed, an ordered sub-

structure must appear. We study multicolour fillings of a rectangular grid 

a × b under the prohibition of a monochromatic axis-aligned rectangle, 

which is treated as a basic local pattern of order. 

Threshold characteristics are introduced to describe the boundaries of 

existence of admissible configurations: parameter regions are identified 

where the forbidden pattern can still be avoided (i.e., counterexamples ex-

ist), and regions where its appearance is guaranteed for any colouring. For 

the two- and three-colour cases, we obtain estimates related to the area of 

the largest nontrivial counterexamples and determine the smallest rectan-

gles (by area) that can no longer be counterexamples. Thus, the results 

specify critical scales beyond which local regularity becomes unavoidable. 

The obtained estimates have practical relevance in problems where it is 

important to control the emergence of repeating local configurations in ma-

trix data. In particular, they can be used for mathematical modelling and 

for designing assignment matrices in «time–channel» allocation schemes 

(rows correspond to time slots, columns to channels or resources, and col-

ours to classes/states) in order to reduce unwanted repetitions and artificial 

correlations. Moreover, the proposed approach is suitable for generating 

controlled test arrays in pattern-detection tasks for two-dimensional data 

(event matrices, observation maps, images), where one needs a guaranteed 

absence of a specified type of regularity up to a given size threshold. 

Key words: Ramsey theory, Ramsey numbers, multicolour colourings.  

Отримано: 11.12.2025 
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