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АНАЛІЗ МЕТОДОМ ДВОБІЧНИХ НАБЛИЖЕНЬ ДОДАТНИХ 
АКСІАЛЬНО-СИМЕТРИЧНИХ РОЗВ’ЯЗКІВ 

ПЕРШОЇ КРАЙОВОЇ ЗАДАЧІ ДЛЯ РІВНЯННЯ ГЕЛЬМГОЛЬЦА 
З МОНОТОННОЮ СТЕПЕНЕВОЮ НЕЛІНІЙНІСТЮ 

У роботі проведено аналіз методом двобічних наближень 
додатних аксіально-симетричних розв’язків першої крайової 
задачі для напівлінійного еліптичного диференціального рів-
няння з оператором Гельмгольца. 

Область, у якій розглядається задача, є кругом, на межі яко-
го поставлено однорідну першу крайову умову. Характер нелі-
нійності є монотонним, описується степеневою залежністю від 
шуканої функції, де показник змінюється від 0 до 1. Переходячи 
до полярних координат і враховуючи, що розв’язок має аксіаль-
ну симетрію (тобто залежність від кута повороту відсутня, а на-
явна лише залежність від відстані до центру круга), отримаємо, 
крайову задачу для напівлінійного звичайного диференціально-
го рівняння. Полюс полярної системи координат є особливою 
точкою цього рівняння, що приводить до необхідності накласти 
в цій точці на розв’язок умову обмеженості. 

Для задачі будується функція Гріна і здійснюється перехід до 
еквівалентного інтегрального рівняння Гаммерштейна, що розг-
лядається як нелінійне операторне рівняння в банаховому просто-
рі неперервних на відрізку функцій, напівупорядкованому кону-
сом невід’ємних на цьому відрізку функцій. Досліджено власти-
вості відповідного інтегрального оператора такі, як монотонність 
(ізотонність), додатність, обмеженість і увігнутість 

На наступному етапі дослідження знаходяться кінці інварі-
антного конусного відрізка, що є початковими наближеннями 
для ітераційного процесу. Після цього будуються два парале-
льних ітераційних процеси. Перша ітераційна послідовність не 
спадає за конусом (нижні наближення), а друга – не зростає за 
конусом (верхні наближення). За поточне наближення на кож-
ній ітерації обирається середнє арифметичне верхнього та ни-
жнього наближень. Отже, на кожному своєму кроці ітерацій-
ний процес дає нам апостеріорну оцінку похибки. Зроблено 
висновок про існування та єдиність додатного аксіально-
симетричного розв’язку розглядуваної задачі. 

Теоретичні результати, отримані в роботі, було підтверд-
жено шляхом проведення обчислювального експерименту. 
Проаналізовано залежність розв’язку і швидкість збіжності 
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ітераційного процесу від параметрів рівняння, що проілюстро-
вано відповідними графіками. 

Ключові слова: аксіально-симетричний додатний розв’я-
зок, інваріантний конусний відрізок, інтегральне рівняння 
Гаммерштейна, крайова задача для напівлінійного еліптично-
го рівняння, метод двобічних наближень, монотонний опера-
тор, оператор Гельмгольца, функція Гріна. 

Вступ. Застосування методів математичного моделювання різ-
номанітних механічних і природних процесів, зокрема, процесів не-
лінійної теплопровідності, приводить до необхідності знаходження 
додатних розв’язків крайових задач для напівлінійного еліптичного 
рівняння вигляду [1] 

2 ( , )u u f u   x , x . 

Якщо область   є кругом радіуса R  в просторі 2 , то можна 
поставити задачу знаходження аксіально-симетричного розв’язку 

рівняння, тобто розв’язку, що залежить лише від 2 2
1 2x x   x , 

де x = (x1, x2). Тоді вихідна задача для рівняння з частинними похід-
ними зведеться до крайової задачі для напівлінійного звичайного ди-
ференціального рівняння. 

Клас задач для напівлінійних диференціальних рівнянь, у яких мо-
жливо знайти точний розв’язок, є дуже обмеженим, тому такі задачі 
розв’язують чисельно, використовуючи, наприклад, сіткові, варіаційні 
чи ітераційні методи. Найбільш зручними є ітераційні методи через зру-
чність своєї обчислювальної реалізації, а також через властивість само-
виправності. Серед ітераційних методів особливо виділяються методи 
двобічних наближень, оскільки вони є як універсальним інструментом 
дослідження існування та єдиності розв’язків операторних рівнянь, так і 
надають можливість фактичного їх знаходження. Окрім того, двобічні 
наближення дозволяють одержати верхню та нижню оцінку розв’язку на 
кожному кроці ітераційного процесу, а отже, отримати зручну апостері-
орну оцінку похибки наближеного розв’язку. 

Теоретичним підґрунтям розробки двобічних ітераційних методів 
є теорія нелінійних операторів у напівупорядкованих банахових прос-
торах. Ці методи були застосовані до нелінійних диференціальних рів-
нянь у роботах [3, 10, 11]. В тому числі знаходилися аксіально-
симетричні розв’язки, але розглядався випадок напівлінійного рівняння 
лише з оператором Лапласа, а отже аналогічні задачі для двовимірного 
простору з оператором Гельмгольца потребують досліджень. 

Таким чином, наукова задача вдосконалення існуючих методів 
двобічних наближень у застосування їх до задачі знаходження додат-
них аксіально-симетричних розв’язків напівлінійних еліптичних рів-
нянь з оператором Гельмгольца та степеневою монотонною неліній-
ністю є актуальною. 
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Ця стаття продовжує дослідження, розпочаті в роботах [2-6, 9-
12], в частині їх перенесення на випадок двовимірного напівлінійного 
еліптичного рівняння з оператором Гельмгольца і монотонної степе-
невої нелінійності. 

1. Постановка задачі. В одиничному крузі 
2

1 2{ ( , ) : 1}x x   x x   

розглядатимемо напівлінійне стаціонарне рівняння 

 2 pu u u    , x , (1) 

з однорідною крайовою умовою першого роду (умова Діріхле) 

 0u


 , (2) 

де 0  , 0p  , 0  . 

Задача (1), (2) є математичною моделлю стаціонарного процесу 
теплопровідності за наявності як дисипації (поглинання тепла), так і 
нелінійного джерела тепла. Тут   – коефіцієнт втрат тепла, а нелі-
нійність у правій частині задає потужність джерел тепла. Оператор 

2Lu u u    є оператором Гельмгольца. 

Поставимо задачу знаходження додатного аксіально-симетрич-
ного розв’язку крайової задачі (1), (2). 

2. Основна частина. Розв’яжемо задачу (1), (2) за допомогою ме-
тоду двобічних наближень, заснованого на використання методів теорії 
нелінійних операторних рівнянь у напівупорядкованих просторах [7, 8]. 

У задачі (1), (2) перейдемо до полярної системи координат за 
формулами 

1 cosx   , 2 sinx   , 

0 2   , 0  . 

Оператор Гельмгольца у полярній системі координат має вигляд 
2

2

2 2

1 1u u
Lu u 

    

   
   

   
. 

Оскільки посталено задачу відшукання аксіально-симетричного 

розв’язку ( )u u   задачі (1), (2), то рівняння (1) перетворюється на 

звичайне диференціальне рівняння 

 21 pd du
u u

d d
  

  

 
   

 
. (3) 

Крайова умови (2), задана на колі 1x , зводиться до вигляду 

(1) 0u  . 

Оскільки точка 0   є особливою точкою рівняння (3), то ще 

потрібно поставити умову обмеженості при 0  : 

(0)u   . 
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Таким чином, крайова задача (1), (2) зводиться до крайової задачі 

 21 pd du
u u

d d
  

  

 
   

 
, (0,1) , (4) 

 (0)u   , (1) 0u  . (5) 

Загальний розв’язок диференціального рівняння 

21
0

d du
u

d d
 

  

 
   

 
 має вигляд 1 0 2 0( ) ( )u C I C K   , де 

0( )I z  та 0 ( )K z  – модифіковані функції Бесселя першого та другого 

роду відповідно. Умову обмеженості (0)u    буде виконано, як-

що обрати 1 1C  , 2 0C  , тобто крайову умову при 0   задоволь-

нятиме частинний розв’язок 1 0( ) ( )u I  . Крайову умову (1) 0u   

задовольнятиме частинний розв’язок  

2 0 0 0 0( ) ( ) ( ) ( ) ( )u I K K I      . 

Визначник Вронського цих функцій дорівнює 

0 0 0 0 01 2 0

1 0 1 0 11 2

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) .

( ) ( ( ) ( ) ( ) ( ))( ) ( )

I I K K Iu u I
W

I I K K Iu u

      


        


   

   
 

Отже, функція Гріна розглядуваної крайової задачі має вигляд 

1 2

1 2

( ) ( )
, 0 ,

( )
( , )

( ) ( )
, 1,

( )

u u s
s

s W s
G s

u s u
s

s W s










 


  

  



 

 

0 0 0 0 0

0

0 0 0 0 0

0

( )[ ( ) ( ) ( ) ( )]
, 0 ,

( )

( )[ ( ) ( ) ( ) ( )]
, 1.

( )

I I K s K I s
s

I

I s I K K I
s

I

    




    





 


 

  


 (6) 

Функція Гріна (6) є додатною; її графік зображено на рис. 1. 

 

Рис. 1. Графік функції Гріна ( , )G s  
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Тоді задача (4), (5) еквівалентна інтегральному рівнянню Гамме-
рштейна 

 
1

0

( ) ( , ) ( )pu Q s u s ds    , (7) 

де ( , ) ( , )Q s sG s  . 

Означення. Узагальненим розв’язком крайової задачі (4), (5) на-

звемо функцію * [0,1]u C , що є розв’язком інтегрального рівняння (7). 

У сенсі даного означення розуміється еквівалентність крайової 
задачі (4), (5) і інтегрального рівняння (7). 

Пов’яжемо з рівнянням (7) нелінійний інтегральний оператор, 

що діє у просторі [0,1]C  за наступним правилом: 

 
1

0

( )( ) ( , ) ( )pT u Q s u s ds   . (8) 

Тоді рівняння (7) можна подати у вигляді ( )u T u . Дане рів-

няння розглядатимемо в банаховому просторі [0,1]C , напівупорядко-

ваному конусом K  невід’ємних на [0,1]C  функцій [7, 8, 11]. 

Властивості оператора T  досліджуються аналогічно, як це було 
проведено в [2, 10], і має місце наступна лема. 

Лема. Оператор T , що діє за правилом (8), має такі властивості: 

а) є додатним оператором; 

б) є монотонним оператором для 0p  ; 

в) є увігнутим і навіть 0u -увігнутим для p , де  

0
0 2

0

( )1
( ) 1

( )

I
u

I






 
  

 

. 

Нехай 0( )K u  – множина тих елементів u K , для яких можна 

вказати такі ( ) 0u   , ( ) 0u   , що 0 0u u u   . Оскільки 

оператор T  перетворює конус K  в 0( )K u , то кінці інваріантного 

конусного відрізку 0 0,v w   шукатимемо у вигляді 

0 0v u , 0 0w u . 

Тоді умови 0 0( )T v v  , 0 0( )T w w  , що визначають кінці інва-

ріантного конусного відрізка, приводять до наступних нерівностей 

для визначення сталих   і   ( 0    ): 

 

1

00

0

( , ) ( ) ( )
pp Q s u s ds u     для всіх ] ,  (9) 
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1

00

0

( , ) ( ) ( )
pp Q s u s ds u     для всіх ] .  (10) 

Нерівності (9) і (10) можуть бути зведені до вигляду 

 1 p m   , 1 p M   , (11) 

де 

1

0
[0,1]

00

( )
min ( )

( )

pQ s
m u s ds

u






  , 

1

0
[0,1]

00

( )
max ( )

( )

pQ s
M u s ds

u






  . 

Знаходимо, що  
11 2

0 0 0

0 0

( )[ ( ) ( )]
( )

p
p

p
m sI s I I s ds

I


  





  , 

12 2

0 0 0 0 0 0

0 0 0

[ ( ) ( ) ( ) ( )][ ( ) ( )]
( ( ) 1) ( )

p
p

p
M s I K s K I s I I s ds

I I


     

 



  


 . 

Тоді з нерівностей (11) знаходимо, що  

 

1

1( ) pm   , 

1

1( ) pM   . (12) 

Кінці інваріантного конусного відрізка обиратимемо за початко-

ві наближення при реалізації ітераційного процесу, а отже, для його 

швидшої збіжності слід обрати максимальне значення   і мінімаль-

не значення  , що задовольняють нерівності (12). Таким чином, ос-

таточно одержимо, що для кінців 0 0v u , 0 0w u  інваріантного 

конусного відрізка оберемо значення 
1

1( ) pm   , 

1

1( ) pM   , 

при цьому, очевидно, виконується умова 0    . 

Для крайової задачі (4), (5) сформуємо ітераційний процес за 

формулами 

 

1
( ) ( 1)

0

( ( , )[ ( ]n n pv Q s v s ds      , 1,2,...n  ,  (13) 

 

1
( ) ( 1)

0

( ( , )[ ( ]n n pw Q s w s ds      , 1,2,...n  ,  (14) 

 (0)
0( (v u     , (0)

0( (w u     . (15) 

З огляду на властивості оператора T  можна зробити висновок, 

що ітераційний процес (13)-(15) з двох боків збігається до єдиного в 
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конусі K  додатного розв’язку крайової задачі (4), (5). А саме має 

місце наступна теорема. 

Теорема. Нехай 2
1 2{ ( , ) : 1}x x   x x  – одиничний круг в 

2 . Крайова задача  
2 pu u u    , x ,  

| 0u   

при    , (0,1)p  має єдиний додатний аксіально-симетричний 

розв’язок 

 * * 2 2
1 2(u u x x   , 

до якого двобічно збігаються послідовні наближення, які формують-

ся за схемою (13)-(15).  

Двобічна збіжність послідовних наближень (13)-(15) розуміється 

у сенсі виконання ланцюга нерівностей 
(0) (1) ( )

0

* ( ) (1) (0)
0

...

.... ... ... .

n

n

u v v v

u w w w u





    

      
 

З огляду на двобічний характер процесу (13)-(15) ітерації слід 

проводити до виконання умови 

( ) ( )

[0,1]

1
max ( ( ) ( ))

2

k kw v


  


 
 

 

і тоді з точністю   можна вважати, що  

( ) ( )
( ) ( ) ( )

( ) ( )
2

k k
k w v

u u
 

  
  . 

3. Результати обчислювального експерименту. Обчислюваль-

ний експеримент було проведено для задачі (4), (5) при 

0,1; 0,2; ...; 0,9p      та 1, 2, 3    ,  . 

При 
1

2
p  ,  ,   збіжність з точністю 410  було досягну-

то за 7 ітерацій. При цьому 
(7) 0,03136u  .  

На рис. 2 зображено графіки верхніх ( ) (kw   (суцільна лінія) та 

нижніх ( ) (kv   (пунктирна лінія) наближень. На рис. 3 наведено гра-

фік наближеного розв’язку (7)u   , на рис. 4 – графік функції 

(7) 2 2
1 2u x x   , а на рис. 5 – лінії рівня (з кроком 0,005) функції 
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(7) 2 2
1 2u x x   . В таблиці 1 наведено як зменшується апостеріорна 

оцінка похибки наближеного розв’язку при 
1

2
p  ,  ,  . 

На рис. 6 наведено графіки залежності u  від (0,1)p  для зна-

чень 1, 2, 3     при фіксованому значенні параметра  . Як бачи-

мо, зі збільшенням   збільшується і норма розв’язку крайової задачі, 

але з наближенням p  до 1 норма прямує до нуля. При фіксованому ж 

значенні параметра   зі збільшенням параметра  , норми на-

ближених розв’язків зменшуються (рис. 7). 

 
Рис. 2. Графіки верхніх і нижніх наближень  

 

Рис. 3. Графік наближеного розв’язку 
(7)u    



Серія: Фізико-математичні науки. Випуск 28 

89 

 

Рис. 4. Графік наближеного розв’язку 
(7) 2 2

1 2u x x    

 

Рис. 5. Лінії рівня наближеного розв’язку 
(7) 2 2

1 2u x x    
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Рис. 6. Графіки залежності норми наближеного розв’язку від значень 

параметра p , , 2, 3    ,   

 
Рис. 7. Графіки залежності норми наближеного розв’язку від значень 

параметра p , , 2, 3    ,   

Таблиця 1 

Апостеріорна оцінка похибки наближеного розв’язку на k -й ітерації 

Номер ітерації k  1 2 3 4 

( )k  
20,39 10  

20,20 10  
20,10 10  

30,53 10  

Номер ітерації k  5 6 7  

( )k  
30,26 10  

30,13 10  
40,66 10   

Висновки. У статті вперше досліджено застосовність методу 
двобічних наближень до знаходження аксіально-симетричних 
розв’язків першої крайової задачі для напівлінійного еліптичного 
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рівняння з оператором Гельмгольца. Результати, що було одержано в 
роботі, можна поширити на рівняння з іншими видами нелінійностей, 
іншим характером монотонності та крайовими умовами інших типів. 
Окрім того, отримані результати застосовні для розв’язування прик-
ладних задач, пов’язаних з розрахунком фізико-механічних полів в 
нелінійних середовищах. Цим визначається наукова новизна та прак-
тична значущість отриманих у роботі результатів. 
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ANALYSIS BY THE METHOD OF TWO-SIDED 
APPROXIMATIONS OF POSITIVE AXIALLY SYMMETRIC 

SOLUTIONS OF THE FIRST BOUNDARY VALUE PROBLEM 
FOR THE HELMHOLTZ EQUATION  

WITH A MONOTONE POWER NONLINEARITY 

The paper presents an analysis, using the method of two-sided approxima-
tions, of positive axially symmetric solutions to the first boundary value prob-
lem for a semilinear elliptic differential equation with the Helmholtz operator. 

The domain in which the problem is considered is a disk, on the 
boundary of which a homogeneous first boundary condition is imposed. 
The nonlinearity is monotone and is described by a power dependence on 
the unknown function, where the exponent varies from 0 to 1. By passing 
to polar coordinates and taking into account that the solution is axially 
symmetric (that is, it does not depend on the angular variable and depends 
only on the distance from the center of the disk), we obtain a boundary 
value problem for a semilinear ordinary differential equation. The pole of 
the polar coordinate system is a singular point of this equation, which ne-
cessitates imposing a boundedness condition on the solution at this point. 

For the boundary value problem, a Green’s function is constructed and a 
transition is made to an equivalent Hammerstein integral equation, which is con-
sidered as a nonlinear operator equation in a Banach space of functions continu-
ous on an interval, semi-ordered by the cone of nonnegative functions on this in-
terval. The properties of the corresponding integral operator, such as mono-
tonicity (isotonicity), positivity, boundedness, and concavity are investigated. 

At the next stage of the study, the endpoints of an invariant conical 
segment are determined, which serve as initial approximations for the it-
erative process. After that, two parallel iterative processes are constructed. 
The first iterative sequence is nondecreasing with respect to the cone (low-
er approximations), while the second is nonincreasing with respect to the 
cone (upper approximations). At each iteration, the current approximation 
is chosen as the arithmetic mean of the upper and lower approximations. 
Thus, at each step, the iterative process provides an a posteriori error esti-
mate. As a result, the existence and uniqueness of a positive axially sym-
metric solution to the considered problem are established. 

The theoretical results obtained in the paper were confirmed by con-
ducting a computational experiment. The dependence of the solution and 
the convergence rate of the iterative process on the parameters of the equa-
tion were analyzed and illustrated by the corresponding graphs. 

Key words: axially symmetric positive solution, boundary value prob-
lem for a semilinear elliptic equation, Green’s function, Hammerstein in-
tegral equation, Helmholtz operator, invariant conical segment, method of 
two-sided approximations, monotone operator. 

Отримано: 14.12.2025 
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