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ЗАСТОСУВАННЯ МЕТОДУ ДВОБІЧНИХ НАБЛИЖЕНЬ  
ДО АНАЛІЗУ СТАТИЧНОГО ПРОГИНУ ПРУЖНОЇ БАЛКИ  
З РІЗНИМИ ТИПАМИ ЗАКРІПЛЕННЯ КІНЦІВ В МОДЕЛІ 

МІКРОЕЛЕКТРОМЕХАНІЧНОЇ СИСТЕМИ 

У статті розглядається крайова задача для напівлінійного 
диференціального рівняння четвертого порядку, що описує 
статичний прогин балки в мікроелектромеханічних системах 
(МЕМС) під дією електростатичних сил. Розглянуто різні типи 
закріплення кінців балки: жорстке закріплення (умови Діріхле) 
та шарнірне обпирання (умови Нав’є). 

Для розв’язання відповідної крайової задачі запропоновано 
застосувати метод двобічних наближень, побудований на викори-
станні відповідних функцій Гріна. Вибір методу обґрунтовано йо-
го здатністю не лише будувати наближений розв’язок, а й теоре-
тично встановлювати умови існування розв’язку вихідної задачі 
разом із отриманням зручної апостеріорної оцінки похибки. 

В основі дослідження лежить зведення крайової задачі до 
нелінійного інтегрального рівняння Гаммерштейна, аналіз 
якого проведено методами теорії нелінійних операторів у на-
півупорядкованих банахових просторах. Побудовано ітерацій-
ний процес знаходження додатного розв’язку та визначено 
умови, за яких гарантується двобічна збіжність наближень. 
Для аналізу ефективності алгоритму проведено низку обчис-
лювальних експериментів для різних значень параметрів сис-
теми. Виконано порівняльний аналіз отриманих результатів. 
Досліджено зміну максимального прогину балки та проаналі-
зовано вплив крайових умов на стійкість системи. 

Новизна роботи полягає у розробці та застосуванні схеми ме-
тоду двобічних наближень до рівнянь четвертого порядку, що 
моделюють прогин балок у МЕМС з різними типами закріплення. 
Результати дослідження можуть бути використані при проєкту-
ванні мікроперемикачів, газових датчиків, мікропінцетів та інших 
компонентів сучасної мікросистемної техніки для прогнозування 
їхньої статичної поведінки та оптимізації робочих параметрів. Та-
кож отримані у роботі результати можна розповсюдити на дво- та 
тривимірні задачі, а також (у комбінації з методом Роте) розпо-
всюдити на нестаціонарний випадок. 

Ключові слова: балка, жорстке закріплення, задача Дірі-

хле, задача Нав’є, ізотонний опертор, інваріантний конусний 
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відрізок, крайова задача, математичне моделювання, мікрое-

лектромеханічна система, метод двобічних наближень, про-

гин, рівняння Гаммерштейна, функція Гріна, чисельні методи, 

шарнірне обпирання. 

Вступ. Мікроелектромеханічні системи (МЕМС) є класом при-

строїв, що інтегрують механічні елементи, сенсори, актюатори та 

електроніку на спільній кремнієвій підкладці мікрометрового масш-

табу. За останні десятиліття технологія МЕМС здійснила революцію 

в споживчій електроніці, автомобільній промисловості, медицині та 

аерокосмічній галузі. Від перших акселерометрів для систем поду-

шок безпеки до складних мікродзеркальних матриць для проєкційних 

систем – еволюція цих пристроїв нерозривно пов’язана з вдоскона-

ленням математичних моделей, що описують їх поведінку. 

Ключовим елементом багатьох МЕМС є балка – пружний елемент, 

підвішений над нерухомим електродом. Зокрема, балки використову-

ються у газових датчиках, актюаторах, електростатичних гребінчастих 

приводах, мікропінцетах, мікроклапанах та мікроперемикачах [1-8]. 

Прикладання електричної напруги до такої системи створює різ-

ницю потенціалів, що приводить до виникнення електростатичної 

сили притягання (сили Кулона). Ця сила деформує балку, зменшуючи 

зазор між електродами, що, в свою чергу, збільшує ємність системи 

та саму силу. Математичною моделлю даного процесу є диференціа-

льне рівняння четвертого порядку з нелінійною правою частиною. 

Наявність нелінійності унеможливлює безпосереднє застосування 

аналітичних методів до розв’язання задачі, а тому виникає потреба у 

розробці відповідних чисельних методів, зокрема ітераційних методів 

з двобічним характером збіжності. Теоретичним підґрунтям цих ме-

тодів є теорія нелінійних операторів у напівупорядкованих банахових 

просторах [9, 10]. Зауважимо, що для дослідження математичних мо-

делей МЕМС відомі застосування методу скінченних елементів [11, 

12], методу Гальоркіна [13, 14] тощо, але всі вони не дають змогу 

отримати умови існування розв’язку вихідної задачі та не мають зру-

чної апостеріорної оцінку похибки наближеного розв’язку. Двобічні 

ітераційні методи у аналізі МЕМС використовувались, наприклад, у 

роботах [15, 16], але в них як математична модель розглядалася кра-

йова задача для напівлінійного еліптичного рівняння другого поряд-

ку. Отже, актуальною науковою задачею є розробка методів цього 

класу застосовно до крайових задач для диференціальних рівнянь 

четвертого порядку, що і визначає мету даної роботи. 

Постановка задачі. Розглянемо рівняння, що виникає при ма-

тематичному моделюванні прогину балки у МЕМС, вигляду 
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де ( )u x  – величина прогину балки, 2 0   – коефіцієнт, що характери-

зує механічний натяг,   – коефіцієнт, що прямо пропорційний квадрату 

прикладеної напруги. При цьому 0 ( ) 1u x   для всіх [ 1;  1]x  . 

Зауважимо, що вказана модель виникає при дослідженні стаціо-
нарного процесу і є одновимірним випадком моделі, наведеної в [17]. 

Для отримання єдиного розв’язку рівняння (1) необхідно доповни-
ти його крайовими умовами, які відображають спосіб закріплення кінців 
балки. Крайові умови виникають безпосередньо з фізичної постановки 
задачі. Вони формулюються на основі геометричних обмежень, силових 
умов, особливостей технологічного виготовлення МЕМС тощо. 

У роботі пропонується розглянути два типи крайових умов – 
умову Діріхле  

 ( 1) ( 1) 0u u    , (1) (1) 0u u  ; (2) 

та умову Нав’є 

 ( 1) ( 1) 0u u    , (1) (1) 0u u  . (3) 

Умови (2) означають, що обидва кінці балки жорстко закріплені 
(дорівнюють нулю прогин та кут повороту), а умови (3) означають, 
що балка шарнірно обпирається (дорівнюють нулю прогин та згина-
ючий момент або кривина) [7, 8]. 

Метод розв’язання. До розв’язання задачі (1), (2) та (1), (3) за-
стосуємо метод двобічних наближень на основі використання функції 
Гріна. Функція Гріна крайової задачі (1), (2) має вигляд 
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Функція Гріна крайової задачі (1), (3) має вигляд 
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Функції Гріна задачі (1), (2) та задачі (1), (3) є невід’ємними, що 
перевіряється безпосередньо. 

Таким чином, задача (1), (2) та задача (1), (3) буде еквівалент-
ною інтегральному рівнянню Гаммерштейна 

 
1

2
1

( , )
( )

(1 ( ))

G x s
u x ds

u s






 . (6) 

Рівняння (6) розглядатимемо у банаховому просторі [ 1;  1]  

функцій, неперервних на відрізку [ 1;  1] . Норма у [ 1;  1]  вводиться 

за правилом 
[ 1; 1]

max | ( ) |
x

u u x
 

 . У просторі [ 1;  1]  виділимо конус 

невід’ємних функцій { [ 1;  1]: ( ) 0,  [ 1;  1]}u u x x       . 

Узагальненим розв’язком крайової задачі (1), (2) чи крайової за-

дачі (1), (3) називатимемо функцію u  , що є розв’язком інтегра-

льного рівняння (6). 
З рівнянням (6) пов’яжемо нелінійний інтегральний оператор, 

що діє у [ 1;  1]  за правилом 
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Враховуючи останнє співвідношення, рівняння (6) матиме ви-

гляд ( )u T u . Очевидно, що оператор T  є додатним, тобто залишає 

інваріантним конус  . 

Функція 
2

( , )
(1 )

f x u
u





 є неперервною і додатною для 

[ 1;  1]x  , 0 1u  , монотонно зростає за u , а отже, інтегральний 

оператор (7) буде ізотонним. 
Для оператора T  побудуємо інваріантний конусний відрізок 

0 0,v w  , який є апріорною оцінкою невідомого розв’язку u . Оскі-

льки (0) 0f   , то шукатимемо його у вигляді 0 0, 0,v w    , 

де 0 1  . Тоді умови, що виділяють інваріантний конусний відрі-

зок, набувають вигляду 
1

1

( , ) 0G x s ds


  для всіх [ 1;  1]x  , 

1

2
1

( , )
(1 )

G x s ds



 




  для всіх [ 1;  1]x  . 



Серія: Фізико-математичні науки. Випуск 28 

97 

Оскільки функція Гріна ( , )G x s  вигляду (4) або (5) є не-

від’ємною, то перша нерівність завжди виконуватиметься, а другу 

можемо записати у вигляді 

 
2(1 )

M






, (8) 

де 

1

[ 1; 1]
1

max ( , )
x

M G x s ds
 



  . 

Для функції Гріна вигляду (4) знаходимо, що  
1

[ 1; 1]
1

3
max ( , )

2cth 2csch

2x
M G x s ds

  

 


 
  . 

На рисунку 1 наведено множини розв’язків нерівності (8) для рі-

зних значень   для функції Гріна (4) в залежності від  . 

   
Рис. 1. Множина розв’язків нерівності (8)  

для різних значень   та функції Гріна (4) 

Для функції Гріна вигляду (5) знаходимо, що 
1 2 2

4[ 1; 1]
1

)
max (

(1 2ch sch 2

2
, )

x
M G x s ds

x x  

 


 
  . 

На рисунку 2 наведено множини розв’язків нерівності (8) для рі-

зних значень   для функції Гріна (5) в залежності від  . 

Як бачимо з рисунку 1 та рисунку 2, розглядувана нерівність має 

розв’язки лише при max

4

27M
   . При цьому значенню 

max

4

27M
   відповідає єдине значення 

1

3
  , а при 

4

27M
   мно-

жина розв’язків для   утворює інтервал ( ,  )  , де   і   – відпо-

відно найменший та найбільший з коренів рівняння 

 2(1 )M     (9) 
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на інтервалі (0;  1) , причому 
1

3
  . Оскільки для швидшої збіжності 

ітерацій треба брати якомога менше значення  , то слід обрати 

  . 

   
Рис. 2. Множина розв’язків нерівності (8)  

для різних значень   та функції Гріна (5) 

Також зауважимо, що з рисунку 1 та рисунку 2 бачимо, що при 

однакових значеннях   для збіжності ітераційного процесу для зада-

чі Діріхле можемо обирати більші, порівняно з задачею Нав’є, зна-

чення коефіцієнта max , що відповідає за прикладену напругу. 

Ітераційний процес сформулюємо за схемою 
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G x s
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w s
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


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 , 1, 2, ,k   (11) 

 (0)
0( ) ( ) 0v x v x  , (0)

0( ) ( )w x w x   . (12) 

Перевіримо, за яких умов ітераційний процес (10)-(12) двобічно 

збігається до єдиного на 0,     додатного розв’язку задачі (1), (2) 

чи задачі (1), (3). 

При 0 ,v w    справедлива нерівність 

2 2
( , ) ( , )

(1 ) (1 )
f x w f x v L w v

v w

 
    

 
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



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Тоді 
( 1) ( 1) ( ) ( ) ( ) ( )

[ 1; 1]
( ) ( ) max [ ( )( ) ( )( )]k k k k k k

x
w v T w T v T w x T v x 

 
       
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G x s f s w s f s v s ds

 


    

( ) ( ) ( ) ( )

[ 1; 1]
max [ ( ) ( )]k k k k

x
LM w x v x LM w v

 
    . 

Звідси випливає, що 
( 1) ( 1) 1 (0) (0)( )k k kw v LM w v     . 

Тоді рівність v w   виконується, якщо 1LM   . Таким чи-

ном, можемо сформулювати наступне твердження. 

Теорема 1. Якщо рівняння (9) має розв’язок (0;1)    і 

3

2
1

(1 )

M





, то крайова задача (1), (2) чи крайова задача (1), (3) має 

єдиний на 0,     додатний розв’язок ( )u x , до якого двобічно збі-

гається ітераційний процес (10)-(12). 

Обчислювальний експеримент. Обчислювальний експеримент 

проведено для параметрів 3  , 3  . 

Для задачі (1), (2) 
6 3

6

4 5
0,022032

54( 1)

e e

e
M

 



 . 

Зауважимо, що при виборі параметра 3   отримуємо 

6

max 6 3
6,72436

8( 1)

4
5

5

e

e e



 

 
. 

Інваріантний конусний відрізок шукаємо у вигляді 0,   , де 

  визначається з рівності (9). Обчисливши, отримуємо, що 

0,257909  . 

Тоді 
3

2
0 1, ... 1

(
685

1 )

M


 


, а отже, виконана умова збіжності 

ітераційного процесу відповідно до теореми 1. 

Задаємо точність 410  . Проводимо ітераційний процес (10)-

(12). Процес зійшовся із заданою точністю за три ітерації. На рису-

нку 3 наведено графіки верхніх ( ) ( )kw x  та нижніх ( ) ( )kv x  набли-

жень, 0,1, 2, 3k  . На рисунку 4 наведено графік наближеного 

розв’язку (3) ( )u x . 



Математичне та комп’ютерне моделювання 

100 

1.0 0.5 0.5
x

0.01

0.02

0.03

0.04

v k x , w k x

3, 2.

 

Рис. 3. Графіки верхніх 
( )

( )
k

w x  (штрихова лінія) та нижніх 
( )

( )
k

v x  

(пунктирна лінія) наближень для 0,1, 2, 3k      
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Рис. 4. Графік наближеного розв’язку 
(3)

( )u x  

Дослідимо залежність прогину балки від значення параметра   

при 3  . У таблиці 1 наведено значення параметра  , кількість 

виконаних ітерацій N , оцінка похибки   та значення максимального 

відхилення балки maxu  для задачі (1), (2). 

На рисунку 5 наведено графіки наближених розв’язків ( )u x  для 

різних значень параметра   при 3  . 
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Таблиця 1 

Значення параметра  , кількість виконаних ітерацій N ,  

оцінка похибки   та значення максимального  

відхилення балки maxu  для задачі (1), (2) 

λ N ε umax 

1 2 0,19 · 10–4  0,02284 

2 3 0,14 · 10–4 0,04758 

3 3 0,92 · 10–4 0,07465 

4 4 0,71 · 10–4 0,10489 

5 5 0,86 · 10–4 0,13948 

6 7 0,64 · 10–4 0,18076 

0.5 0.0 0.5
x

0.05

0.10

0.15

u x

1

2

3

4

5

6

 
Рис. 5. Графіки наближених розв’язків u(x) для різних значень параметра λ 

З таблиці 1 та рисунку 5 бачимо, що при збільшенні значення пара-
метра λ, що відповідає за прикладену напругу, відхилення балки збіль-
шується, що узгоджується з фізикою перебігу розглядуваного процесу. 

Для задачі (1), (3) 
3

6

1 4
7 0,044436

162 1
M

e

e

 
    

 . 

Зауважимо, що при виборі параметра 3   отримуємо 
6

6max 3

24( 1)
3,333956

7 4e 7

e

e








 . 

Інваріантний конусний відрізок шукаємо у вигляді 0,   , де   

визначається з рівності (9). Обчисливши, отримуємо, що 0,217986  . 

Тоді 
3

2
0 5, ... 1

(
575

1 )

M


 


, а отже, виконана умова збіжності 

ітераційного процесу відповідно до теореми 1. 
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Задаємо точність 410  . Проводимо ітераційний процес (10)-

(12). Процес зійшовся із заданою точністю за сім ітерацій. На рисунку 6 

наведено графіки верхніх ( ) ( )kw x  та нижніх ( ) ( )kv x  наближень, 

0,1, ..., 7k  . На рисунку 7 наведено графік наближеного розв’язку 

(7) ( )u x . 
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Рис. 6. Графіки верхніх 
( )

( )
k

w x  (штрихова лінія) та нижніх 
( )

( )
k

v x  

(пунктирна лінія) наближень для 0, 1, ..., 7k   

1.0 0.5 0.5
x

0.05

0.10

0.15

u 7 x

3, 3.

 

Рис. 7. Графік наближеного розв’язку 
(7)

( )u x  
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Дослідимо залежність прогину балки від значення параметра   

при 3  . У таблиці 2 наведено значення параметра  , кількість 

виконаних ітерацій N , оцінка похибки   та значення максимального 

відхилення балки maxu  для задачі (1), (3). 

Таблиця 2 

Значення параметра  , кількість виконаних ітерацій N ,  

оцінка похибки   та значення максимального  

відхилення балки maxu  для задачі (1), (3) 

  N    
maxu  

1 3 0,15 · 10–4 0,04809 

2 4 0,81 · 10–4 0,10643 

3 7 0,88 · 10–4 0,18487 

На рисунку 8 наведено графіки наближених розв’язків ( )u x  для 

різних значень параметра   при 3  . 

0.5 0.0 0.5
x

0.05

0.10

0.15

u x

1

2

3

 

Рис. 8. Графіки наближених розв’язків ( )u x  для різних значень параметра   

З таблиці 2 та рисунку 8 бачимо, що при збільшенні значення 

параметра  , що відповідає за прикладену напругу, відхилення бал-

ки збільшується, що також узгоджується з фізикою перебігу розгля-

дуваного процесу. 

Враховуючі дані у таблиці 1 та таблиці 2 можемо зробити порівня-

льний аналіз чисельних розв’язків математичної моделі прогину балки в 

МЕМС для двох типів крайових умов. Бачимо, що за ідентичних геомет-

ричних параметрів та прикладеної напруги максимальне значення про-

гину для задачі Нав’є становить 0,18487, що суттєво перевищує аналогі-

чний показник для задачі Діріхле 0,07465. На рисунку 9 наведено графі-

ки наближених розв’язків задачі Діріхле та задачі Нав’є. 
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Рис. 9. Графіки наближених розв’язків ( )u x  при 3   та 3    

для різних типів закріплення кінців балки 

Така різниця пояснюється наявністю додаткових зв’язків у зада-
чі Діріхле, що обмежують кутові переміщення на кінцях відрізку, 
призводячи до зростання еквівалентної жорсткості балки. З точки 
зору проєктування МЕМС, це вказує на те, що використання шарнір-
но обпертих балок дозволяє досягти більших робочих амплітуд при 
менших енерговитратах, тоді як жорстке закріплення є ефективнішим 
для забезпечення стабільності конструкції, що дає змогу більш якісно 
контролювати досягнення критичної напруги. 

Висновки. У роботі проведено математичне моделювання та аналіз 
статичного прогину балки МЕМС під дією електростатичних сил. Впе-
рше застосовано метод двобічних наближень на основі функцій Гріна 
для розв’язання нелінійних крайових задач для рівнянь четвертого по-
рядку, що описують прогин балок у мікросистемах. Використано апарат 
теорії нелінійних операторів у напівупорядкованих банахових просто-
рах, що дозволило звести диференціальне рівняння до еквівалентного 
інтегрального рівняння Гаммерштейна та встановити теоретичні умови 
існування і єдиності додатного розв’язку. 

Сформований ітераційний процес забезпечив побудову послідовнос-
тей верхніх та нижніх наближень. Обчислювальні експерименти підтвер-
дили швидку збіжність методу та його стійкість при різних параметрах. 

Проведено порівняльний аналіз механічної поведінки балки для 
двох типів закріплення: жорсткого закріплення (умови Діріхле) та 
шарнірного обпирання (умови Нав’є). Встановлено, що тип закріп-
лення суттєво впливає на величину максимального прогину, і, як на-
слідок, на критичне значення напруги. Зокрема, шарнірно обперта 
балка демонструє більшу чутливість до електростатичного наванта-
ження порівняно із закріпленою балкою за аналогічних параметрів. 

Отримані результати та розроблений алгоритм можуть бути ви-
користані при проєктуванні широкого спектра МЕМС, зокрема мік-
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роактюаторів, перемикачів та сенсорів тиску, для прогнозування їхніх 
експлуатаційних характеристик та запобігання передчасному виходу 
з ладу внаслідок втрати стійкості. Також отримані у роботі результа-
ти можна розповсюдити на дво- та тривимірні задачі, а також (у ком-
бінації з методом Роте) розповсюдити на нестаціонарний випадок. 
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APPLICATION OF THE TWO-SIDED APPROXIMATIONS 
METHOD TO THE STATIC DEFLECTION ANALYSIS OF AN 

ELASTIC BEAM UNDER VARIOUS BOUNDARY CONDITIONS 
IN A MICROELECTROMECHANICAL SYSTEM MODEL 

The article addresses a boundary value problem for a fourth-order 
semilinear differential equation that describes the static deflection of a 
beam in microelectromechanical systems (MEMS) under the action of 
electrostatic forces. Various types of beam end conditions are considered: 
fixed-fixed (clamped), which generates Dirichlet boundary conditions, and 
simply supported, which generates Navier boundary conditions.  

The corresponding boundary value problem is solved using the method 
of two-sided approximations based on the use of appropriate Green’s func-
tions. This approach is chosen because it allows not only for the construc-
tion of an approximate solution but also for establishing theoretical condi-
tions for the existence of a solution to the original problem, while provid-
ing a convenient a posteriori error estimation. 

The research is grounded in reducing the boundary value problem to a non-
linear Hammerstein integral equation, which is analyzed using the theory of 
nonlinear operators in semi-ordered Banach spaces. An iterative process for 
finding a positive solution has been constructed, and conditions guaranteeing its 
two-sided convergence have been established. To analyze the algorithm’s ef-
fectiveness, a series of computational experiments for various system parame-
ter values were conducted. A comparative analysis of the obtained results was 
performed. The study investigates the variation in the maximum beam deflec-
tion and analyzes the impact of boundary conditions on the system’s stability. 

The novelty of this work lies in the development and application of the 
two-sided approximations method scheme to fourth-order equations modeling 
beam deflection in MEMS under different types of end conditions. The results 
of the study can be utilized in the design of micro-switches, gas sensors, micro-
tweezers, and other components of modern microsystem technology to predict 
their static behavior and optimize operational parameters. Also, the results ob-
tained in this work can be extended to two- and three-dimensional problems, as 
well as (in combination with the Rothe method) to unsteady-state processes. 

Key words: beam, fixed-fixed (clamped) support, Dirichlet problem, 
Navier problem, isotonic operator, invariant cone segment, boundary val-
ue problem, mathematical modeling, microelectromechanical system, 
method of two-sided approximations, deflection, Hammerstein’s equation, 
Green’s function, numerical methods, simply supported. 
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