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SMOOTHNESS EFFECTS ON NUMERICAL  
INTEGRATION ACCURACY FOR RAPIDLY  

OSCILLATING BIVARIATE FUNCTIONS ON SPARSE GRIDS 

One of the key tasks in modern applied mathematics, without 
which it is impossible to model and analyze complex processes, partic-
ularly in digital image processing, is the numerical integration of func-
tions of several variables. The main problem of numerical integration 
of functions of several variables is the increase in computational costs 
with increasing dimension of the integration domain.  

Of particular interest are numerical integration methods developed 
using information operators that restore intermediate values of quanti-
ties based on a given set of known values of a function of several vari-
ables at points, lines, planes, etc. Based on such operators, economical 
schemes for interpolating functions of several variables are construct-
ed. The use of economical schemes in the numerical integration of 
functions of two and three variables allows one to construct sparse 
grids and calculate approximate integrals with less data and with a pre-
determined accuracy compared to classical methods.  

The purpose of this article is to demonstrate the use of economical 
interpolation schemes for approximate calculation of double integrals 
of rapidly oscillating functions of general form on different classes of 
smoothness. The paper analyzes the influence of the order of differen-
tiability of a function on the rate of decay of the theoretical error of ap-
proximation of cubature formulas. It is shown that as the smoothness of 
the function increases, the estimates of the error of numerical integra-
tion improve, which allows the effective use of sparse grids without 
loss of accuracy. The results obtained establish a quantitative relation-
ship between the class of differentiability of a function, the discretiza-
tion parameters, and the frequency of oscillations, and can be used to 
justify the choice of numerical methods for integrating rapidly oscillat-
ing functions of two variables. 

Key words: mathematical modeling of processes, digital image 
processing, numerical integration, rapidly oscillating functions of 
many variables, cubature formula, function interpolation, sparse grids. 

Introduction. In modern applied mathematics, numerical integration of 
functions of several variables is one of the important tasks [1-5]. In mathemat-
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ical physics, such tasks arise when modeling heat conduction, diffusion, distri-
bution of potentials, energies, and other physical quantities in continuous me-
dia, and in digital signal and image processing tasks, the calculation of multi-
dimensional integrals arises in filtering, signal reconstruction, spectral analy-
sis, and the calculation of correlation and statistical characteristics. It is im-
portant to note that as the dimension of the integration region increases, the 
computational complexity increases, so it is important to find effective meth-
ods for numerical integration of functions of several variables. Currently, there 
are methods of numerical integration, including methods of numerical integra-
tion of rapidly oscillating functions of several variables, which are developed 
using information operators that restore intermediate values of functions based 
on known values of the function at points, lines, planes, etc. [6-11]. We refer 
to such information operators as those developed by O. M. Lytvyn [12-14], on 
the basis of which economical schemes for interpolating functions of several 
variables have been created. The use of economical interpolation schemes in 
constructing cubic formulas for the approximate calculation of rapidly oscillat-
ing functions of several general types made it possible to perform calculations 
with less data compared to classical methods [15]. This article discusses the 
use of economical interpolation schemes for approximate calculation of dou-
ble integrals of rapidly oscillating functions of general form for higher orders 
of differentiability. The main focus is on how the error estimate of numerical 
integration improves with increasing smoothness of the function, which allows 
for the effective use of a sparse grid. 

Problem statement. Consider  2, ,rН M M   the class of real func-

tions defined  
2

0, 1G   and such that 

       ,0 0,
, ,  , ,

r r
f x y M f x y M   

   ,
, , 1, 2

r r
f x y M r  .  

For approximate calculation of the integral of functions of two varia-
bles of the form  

  
1 1

( , )

0 0

i g x yI e dxdy    , 2   (1) 

construct a cubature formula using linear spline interpolation operators 

based on linear spline O. M. Lytvyn's operators on the class  2,2 ,Н M M . 

Compare the accuracy of the cubature formula on the class  2,1 ,Н M M  

and  2,2 ,Н M M . 

Numerical integration of rapidly oscillating functions of general 

form on a class  2, , , 1, 2rН M M r  .  

Let us introduce the following notation: 
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0 0

1 1
10 0 1 10 0 1

1 1

1 1

0, , 0, ,

1 ( ) , , 1 ( ) , ,

0, , 0, ,

x x y y

x x y y
h x x x x H y y y y

x x y y

  
 

  
      

  
   

 

1

1
1

1
1 1

1
1

1

1

0, ,

, ,

1 ( ) 1, 1,

, ,

0, ,

k

k
k k

k
k

k k

k

x x

x x
x x x

h x k
x x

x x x

x x














  
 

  
  

 




 

1

1

1
1

1 1
1

1
1

1

0, ,

, ,

1 ( ) 1, 1,

, ,

0,

j

j

j j

j
j

j j

j

y y

y y
y y y

H y j
y y

y y y

y y

















  

  


 
 




 

1 1

1 1

1 1 1 1 1 1

1 1

1 1

1 1 1 1
1 1

0, , 0, ,

1 ( ) , ,    1 ( ) , ,

0, , 0, ,

x x y y

x x y y
h x x x x H y y y y

x x y y

 

 

  
 

  
      

  
  
 

 

1 1 1
1

1
, ,k jx k y j      ; 

0 0

1 1
10 0 1 10 0 1

1 1

1 1

0, , 0, ,

1 ( ) , , 1 ( ) , ,

0, , 0, ,

x x y y

x x y y
h x x x x H y y y y

x x y y

  
 

  
      

  
   

 

1

1
1

1 2
1 1

1
1

1

1

0, ,

,

1 ( ) 1, 1,

, ,

0, ,

k

k
k k

k

k
k k

k

x x

x x
x x x

h x k
x x

x x x

x x















 

 
  

  
 



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1

1

1
1 2

11
1

1
1

1

0, ,

, ,

1 ( ) 1, 1,

, ,

0, ,

j

j

j j

j
j

j j

j

y y

y y
y y y

H y j
y y

y y y

y y

















 

 
  


  




 

2

1

2

1
2 2 2

1 1 1

2

1

1

1 1
1

0, ,

1 ( ) , ,

0, ,

x x

x x
h x x x x

x x









  


 


 

2

2

1
2 2 2

1 1 1

2

1

1

1 1
1

0, ,

1 ( ) , ,

0, ,

y y

y y
H y y y y

y y









  


 


 

2
1 1 11 2

1

1
, , , 0, , .

jk
x k y j k j        

Auxiliary functions  

10 102 ( ), 2 ( )h x Н y , 1 22 ( ), 1, 1,ph x p    1 22 ( ), 1, 1 ,sH y s    

2 2
1 12 ( ), 2 ( )h x H y , 10 102 ( ), 2 ( ),h x H y  

2
1 22 ( ), 1, 1,ph x p    

2
21

2 ( ), 1, 1,
s

H y s    2

21
2 ( ),h x 2

21
2 ( )H y   

are defined similarly to  

2 2 / 2,px p     2 2 / 2,sy s    
2

21,p,s  , 2
2 21/  . 

Let's consider operators  

         
1 1

1 1

0 0

, , 1 , 1k k j j

k j

Jf x y f x y h x f x y H y
 

   

     
1 1

1 1

0 0

, 1 1k j k j

k j

f x y h x H y
 

 ; 

       

2

1 1

1 1
0 0

, , 1 1k kj j
k j

Jf x y f x y h x H y
 

   
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     

2

1 1

11
0 0

, 1 1j jk k
j k

f x y h x H y
 

   

     
1 1

1 1

0 0

, 1 1k j k j

k j

f x y h x H y
 

 ; 

         
2 2

1 1

0 0

, , 2 , 2p p s s

p s

Og x y g x y h x g x y H y
 

   

     
2 2

1 1

0 0

, 2 2p s p s

p s

g x y h x H y
 

 ; 

       

2

2 2

1 1

0 0

, , 2 2p s p s

p s

Og x y g x y h x H y
 

 

     

2

2 2

1 1

0 0

, 2 2p j p s

s p

g x y h x H y
 

       
2 2

1 1

0 0

, 2 2p s p s

p s

g x y h x H y
 

 . 

If we introduce additional operators 

     
1

1 1

0

, , 1 ,k k

k

J f x y f x y h x


       
1

2 1

0

, , 1 ;j j

j

J f x y f x y H y


  

     

2

1

1 1
0

, , 1 ,
k k

k

J f x y f x y h x


       

2

1

2 1
0

, , 1
j j

j

J f x y f x y H y


 ; 

     
2

1 1

0

, , 2p p

p

O g x y g x y h x


  ,      
2

2 1

0

, , 2s s

s

O g x y g x y H y


 ; 

     

2

2

1 1

0

, , 2p j p

p

O g x y g x y h x


  ,      

2

2

2 1

0

, , 2p s s

s

O g x y g x y H y


 , 

then for interlinear operators  , ,Jf x y   ,Og x y  and interpolating oper-

ators    , , ,Jf x y Og x y , the following identities hold: 

 1 2 1 2Jf J J J J f   ,  1 2 1 2 1 2Jf J J J J J J f   ; 

 1 2 1 2Og O O O O g   ,  1 2 1 2 1 2Og O O O O O O g   . 

The following cubature formula  

 
1 1

0 0

,Jf x y dxdy     
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is proposed for the approximate calculation of the integral  

 
1 1

0 0

,I f x y dxdy   . 

Theorem 1. [15] Let    2,1, ,f x y Н M M , then  

 ,I     
1 1 1 1

0 0 0 0

, ,f x y dxdy Jf x y dxdy      2
1

6

9

M M
. 

Theorem 2. Let    2,2, ,f x y Н M M , then  

 ,I     
1 1 1 1

0 0 0 0

, ,f x y dxdy Jf x y dxdy      4
1

24

144

M M
. 

Proof. Let us consider additional functions that will be used in prov-

ing the theorem for representing the approximation error of  ,f x y  by 

the interlinear operator  ,Jf x y  through 
   2,2

,f x y : 

 

 

 

1

1
1

1 1
1

, ,

,

, ,

k
k k

k k
k

k
k k

k k

x x
x x x

x x
K x

x x
x x x

x x

 



 





 



   

 
   

 

 

 

 

1

1

2

1 1
1

, ,

,

, ,

j

j j
j j

j
j

j j
j j

y y
y y y

y y
K y

y y
y y y

y y

 



 





 



  


 


  

 

 

 
 

 

1

1

1

1 1
1

, ,

,

, ,

k
k k

k k

k
k

k k
k k

x x
x x x

x x
K x

x x
x x x

x x

 



 





 



  


 

   
 

 

 

 

1

1

2

1 1
1

, ,

,

, .

j

j j
j j

j
j

j j
j j

y y
y y y

y y
K y

y y
y y y

y y

 



 





 



  


 


   



 

Let's find the estimate  ,I  : 
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 ,I 

1 1 1 1

0 0 0 0

( , ) ( , )f x y dxdy Jf x y dxdy       

1 1

0 0

( , ) ( , ) ( , ) ( , )f x y Jf x y Jf x y Jf x y dxdy       

1 1 1 1

0 0 0 0

( , ) ( , ) ( , ) ( , )f x y Jf x y dxdy Jf x y Jf x y dxdy         

1 1

0 0

( , ) ( , )f x y Jf x y dxdy   

   
1 1

1 2 1 2 1 2 2 1 1 2

0 0

( , ) ( , )J J J J f x y J J J J J J f x y dxdy         

       
1 11 11 11 1

2,2
1 2

0 0

, , ,

j jk k

k j k j

y yx x

k j

k j x y x y

f K x K y d d dxdy     
   

 

        

 
2

11 11 11 1
2,0

1
0 0

( , ) ( , )

jk k

jk k

yxx

j k
j k x x y

f y K x d dx dy  
  

 

       

 
2

1 111 11 1
0,2

2

0 0

( , ) ( , )

j jk

j

k j j

y yx

k

k j x y y

dx f x K y d dy  
  

 

     . 

Note that 

 
1 1

1
1 1

1 1

,
k k

k k

x xx
k k

k k k
k k k kx x x

x x x x
K x d x d x d

x x x x
     

 




 

 
    

     

   1
1

1 1

k k
k k

k k k k

x x x x
x x x x

x x x x




 

 
   

 
, 

and 

 
1 1

1 ,
k k

k k

x x

k

x x

K x d dx 
 

 

   
1

1
1

1 1

k

k

x

k k
k k

k k k kx

x x x x
x x x x dx

x x x x






 

  
     

  
  

   1 1
3 3

1

1

1 1

2 3 2 3

k k

k k

x x
k k

x x

x x x x
dx dx

 

 
  

    
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   1 1

4 4

1

1

1

2 4 3 4 3

k k

k k

x x
k k

x x

x x x x 


  
   
   
 

4 4 3 3
1 1 1 1

1

21

2 3 4 3 4 4! 12

    
       

. 

So, 

 ,I 
2 2

1 1

12 12
M

 
 

3
21

1 1 1

2
2

4!
M


   

=
4

1144

M


4
16

M


4
1

24

144

M M
. 

Theorem 2 is proven. 

The following cubature formula  

  
1 1

(x,y)

0 0

ei Og dxdy     (2) 

is proposed for the approximate calculation of integral (1). 

Theorem 3. [15] Let    2,1, ,g x y Н M M , then 

  ( ),I  

1 1 1 1
( , ) ( , )

0 0 0 0

i g x y i Og x ye dxdy e dxdy      
 

2
2

6
min 4; .

9

M M 
 
 
 

 

Theorem 4. Let      2,2, , , ,f x y g x y Н M M , then  

  ( ),I  

1 1 1 1
( , ) ( , )

0 0 0 0

i g x y i Og x ye dxdy e dxdy      
 

4
2

24
min 4; .

144

M M 
 
 
 

 

Proof. Let us consider additional functions that will be used in prov-

ing the theorem for representing the approximation error of  ,g x y  by 

the interlinear operator  ,Og x y  through 
   2,2

,g x y : 

 

 

 

1

1

1

1 1
1

, ,

,

, ,

p

p p
p p

p
p

p p
p p

x x
x t x t x

x x
G x t

x x
x t x t x

x x





 



  


 


  

 

 

 

 

 

1

1
2,

1 1
1

, ,

,

, .

s
s s

s
s

s
s s

s

y y
y y y

y y
G y

y y
y y y

y y

 



 





 



   

 
   

   
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 
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


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Let's find the estimate   ( ),I   : 

  ( ),I  

1 1 1 1
( , ) ( , )

0 0 0 0

i g x y i Og x ye dxdy e dxdy        

1 1 1 1
( , ) ( , )

0 0 0 0

i g x y i Og x ye dxdy e dxdy      

1 1 1 1
( , ) ( , )

0 0 0 0

i Og x y i Og x ye dxdy e dxdy        

1 1
( , ) ( , )

0 0

i g x y i Og x ye e dxdy    
1 1

( , ) ( , )

0 0

i Og x y i Og x ye e dxdy     

 1 1
( , ) ( , )

2

0 0

( , ) ( , )
2 sin

2

i g x y Og x yg x y Og x y
i e dxdy


  

    

 1 1
( , ) ( , )

2

0 0

( , ) ( , )
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2

i Og x y Og x yOg x y Og x y
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1 1

0 0
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2

g x y Og x y
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 
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1 1

0 0
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 
    

   1 1

0 0
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2 min 1;
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   1 1
1 2 1 2 1 2 2 1 1 2

0 0

( , ) ( , )
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4
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 
 

. 

Theorem 4 is proven. 

The results obtained allow us to construct estimates of approximation 

errors for integrals of rapidly oscillating functions of a more general form, 

in particular for the integral 

  
1 1

2 ( , )

0 0

( , ) i g x yI f x y e dxdy    . (3) 

Comparison of the accuracy of the cubature formula on classes 

 2,1 ,Н M M  and  2,2 ,Н M M . The efficiency of numerical integration 

of functions of two variables significantly depends on the smoothness 

class of the integrand. For rapidly oscillating integrals, the order of differ-
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entiability determines the possibility of obtaining more accurate theoretical 

estimates of error and justifies the choice of discretization parameters. In 

this regard, it is advisable to compare the accuracy of quadrature formulas 

on different classes of functions that differ in their level of smoothness. 

Consider the function sin( )x y , which belongs to the class 

 2, ,rН M M , 1,2r  , 1M M  .  

For a given function, consider the behavior of the error of the cuba-

ture formula (2). Pay particular attention to analyzing the dependence of 

the rate of error decay on the order of differentiability and the influence of 

this factor on the efficiency of using sparse grids.  

According to Theorem 2, the accuracy of the approximation of inte-

gral (1) by formula (2) on the class  2,1 ,Н M M  is equal to 

 1 1 2

7

9


    , when 2  , and according to Theorem 4 – on the 

class  2,2 ,Н M M  it is equal to  2 2 4

25

144


    , when 2  .  

Table 1 shows the values of theoretical errors 1  and 2  in class 

 2,1 ,Н M M ,  2,2 ,Н M M  respectively, and for different values of   

and . 

Table 1  

Comparison of theoretical errors at 20 , 60 ,100     

 20   1  2  

64 20   1,193e -02 6,502e-07 

128 20   2,983e-03 4,064e-08 

256 20   7,456e-04 2,539e-10 

512 20   1,864e-04 1,587e-10 

1024 20   4,660e-05 9,921e-12 

256 60   2,273e-03 7,619e-09 

512 60   5,592 e-04 4,762e-10 

1024 60   1,398e-04 2,976e-11 

512 100   9,321e-04 7,936e-10 

1024 100   2,330e-04 4,960e-11 
  

Fig. 1 and Fig. 2 show the curves of theoretical trajectories 1  and 

2  for different values of   and .  
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Fig. 1. Visualization of error values 1   

 
Fig. 2. Visualization of error values 2  

Conclusions. The article provides estimates of approximation errors in 

numerical integration of rapidly oscillating functions on a class of differentia-

ble functions using sparse grids. Approximation operators were constructed 

based on O. M. Lytvyn's information operators. A comparative analysis of the 

accuracy of the cubature formula on different classes of functions showed that 

the class of differentiability of a function is a determining factor that influ-

ences the rate of decrease of the theoretical error of numerical integration. For 

functions with a higher level of smoothness, a significant increase in accuracy 

is achieved even when using sparse grids. Thus, the results obtained confirm 

the need to take into account the smoothness class when choosing the cubature 

formula and discretization parameters and can serve as a theoretical justifica-
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tion for the use of sparse grids for numerical integration of rapidly oscillating 

functions of two variables. 
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ВПЛИВ ГЛАДКОСТІ НА ТОЧНІСТЬ ЧИСЕЛЬНОГО 
ІНТЕГРУВАННЯ ШВИДКООСЦИЛЬОВАНИХ ФУНКЦІЙ  

ДВОХ ЗМІННИХ НА РОЗРІДЖЕНИХ СІТКАХ 

Однією з ключових задач у сучасній прикладній математиці, без 
якої неможливе моделювання та аналіз складних процесів, зокрема в 
цифровій обробці зображень, є чисельне інтегрування функцій бага-
тьох змінних. Основна проблема чисельного інтегрування функцій 
багатьох змінних полягає в зростанні обчислювальних витрат зі збі-
льшенням розмірності області інтегрування.  

Особливий інтерес становлять методи чисельного інтегрування, роз-
роблені з використанням інформаційних операторів, які відновлюють 
проміжні значення величин за наявним набором відомих значень функції 
багатьох змінних в точках, на лініях, площинах, тощо. На основі таких 
операторів будуються економні схеми інтерполяції функцій декількох 
змінних. Застосування економних схем в чисельному інтегруванні функ-
цій двох та трьох змінних дозволяє будувати розріджені сітки та обчис-
лювати наближено інтеграли з меншою кількістю даних та із заданою на-
перед точністю порівняно з класичними методами.  

Метою даної статті є демонстрація використання економних схем 
інтерполяції для наближеного обчислення подвійних інтегралів від 
швидкоосцильованих функцій загального виду на різних класах глад-
кості. В роботі проаналізовано вплив порядку диференційовності фу-
нкції на швидкість спадання теоретичної похибки наближення куба-
турної формул. Показано, що зі зростанням гладкості функції покра-
щуються оцінки похибки чисельного інтегрування, що дозволяє ефек-
тивно використовувати розріджені сітки без втрати точності. Отрима-
ні результати встановлюють кількісний зв’язок між класом диферен-
ційовності функції, параметрами дискретизації та частотою осциляцій 
і можуть бути використані для обґрунтування вибору чисельних ме-
тодів інтегрування швидкоосцилюючих функцій двох змінних. 

Ключові слова: математичне моделювання процесів, цифрова 
обробка зображень, чисельне інтегрування, швидкоосцильовані функ-
цій багатьох змінних, кубатурна формула, інтерполяція функцій, роз-
ріджені сітки. 
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