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NUMERICAL INTEGRATION OF RAPIDLY  
OSCILLATING FUNCTIONS USING RECONSTRUCTION 

OPERATORS BASED ON DATA ON LINES 

In modern mathematical modelling of physical and technical 

processes, the problem of processing and analysing functions of 

many variables, whose values are known on line systems, is rele-

vant. Digital image processing tasks, in particular the numerical in-

tegration of oscillating functions, are no exception. In digital image 

processing tasks, a significant part of the information about the ob-

ject under study comes in the form of measurements along individ-

ual directions or lines, which is characteristic of tomographic 

methods, remote sensing and visualization systems. The develop-

ment and application of effective methods for the numerical inte-

gration of rapidly oscillating functions based on data on a line sys-

tem is an important prerequisite for improving the accuracy of re-

construction, filtering, and analysis of digital images. 

The research in the article is devoted to the numerical integra-

tion of rapidly oscillating functions of several variables. The article 

presents a cubature formula for the approximate calculation of 

double integrals of an oscillating exponential function. The cuba-

ture formula uses traces on mutually perpendicular lines as func-

tion data in its construction. Error estimates are presented for a 

class of differentiable functions.  

Much attention is paid to testing the cubature formula for ap-

proximate calculation of double integrals of the osclilating expo-

nential function. The results obtained allow us to explain the choice 

of parameters and confirm the theoretical error estimates. The nu-

merical experiment is of particular importance because it is the ba-

sis for analysing and predicting the behaviour of the method in the 

three-dimensional case. This is due to the fact that with an increase 

in dimension, the amount of information required about the inte-

grand increases, the error structure becomes more complex, and the 

computational costs increase significantly.  
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The paper presents a cubature formula for the approximate cal-

culation of triple integrals of an oscillating exponential. The values 

of the function are given as traces of the function on a system of 

mutually perpendicular lines. An estimate of the approximation er-

ror on a class of differentiable functions is obtained.  

Key words: mathematical modelling of processes, digital image 

processing, numerical integration of rapidly oscillating functions of 

several variables, cubature formula, restoration of functions on lines. 

Introduction. In modern mathematical modelling of physical and 

technical problems, there is an increasing need to process and analyse 

functions of several variables defined not on the entire domain, but only 

on limited sets, in particular on lines, sections, and intersections. 

In a number of applied situations, such as computer tomography, op-

tical and seismic tomography, digital visualization, aerospace sensing, 

measurements are only available along certain straight or intersecting 

lines, due to the physical nature of the experiment or technical limitations 

of the system. This leads to fundamentally incomplete initial information, 

which requires special mathematical approaches to restoration, approxima-

tion, and numerical integration. 

The situation is particularly challenging when the function to be re-

stored or integrated has a rapidly oscillating nature, as is the case, for ex-

ample, in high-frequency acoustics, quantum mechanics, and electromag-

netic modelling. In such cases, traditional methods of numerical integra-

tion or interpolation prove to be ineffective or even unsuitable. 

The development of new mathematical models and computational meth-

ods based on recovery operators from line data opens up the possibility of 

more accurate modelling of the internal properties of objects, which is critical-

ly important in medical diagnostics, materials testing, geophysical exploration, 

digital image processing, and other fields. Separately, it is also worth noting 

the issue of constructing mathematical models, where it is necessary to calcu-

late double and triple integrals of rapidly oscillating functions of a general 

form. This task is more complex, requiring more detailed study and the crea-

tion of new approaches to obtain meaningful results. 

One effective approach to solving such problems is based on the use 

of special restoration operators that allow approximating or accurately 

reconstructing a function over the entire domain based on its values on 

linear sets. Such operators include O. M. Lytvyn's information operators 

(interpolation operators) [1, 2]. The role of operators in mathematical 

modelling of digital signal and image processing, computer and seismic 

tomography is most fully presented in [3-5]. 

The problem of approximate calculation of integrals of rapidly oscillat-

ing functions of many variables has both a classical solution [6-8] and solu-
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tions using various information operators [9, 10]. In [11-14], algorithms for 

calculating two-dimensional and three-dimensional integrals of fast-oscillating 

functions of general form are presented. However, the question of approxi-

mate calculation of integrals of fast-oscillating functions of three variables of 

general form in the case of using restoration operators based on data on lines 

on the class of differentiable functions has not been investigated.  

Integration of a rapidly oscillating exponential function on the 

class  2,1 ,Н M M . Consider the class  2,1 ,Н M M  – a class of real func-

tions defined on  
2

0,1G   and such that the first-order partial derivatives 

with respect to the variables x  and y  are bounded, i.e. 

   1,0 0,1
( , ) ,  ( , ) ,f x y M f x y M   

 1,1
( , )f x y M . 

For the approximate calculation of the integral of functions of two 

variables of the form  

 
 

1 1
,2

0 0

( , , ) ( , ) e
i g x y

I f g f x y dxdy


     (1) 

a cubature formula is proposed using piecewise constant spline interpola-

tion operators based on piecewise constant O. M. Lytvyn's operators. An 

estimate of the approximation error of the cubature formula is obtained for 

the class of differentiable functions. 

Definition. By the trace of the function ( , )u x y  on the lines 

,
2

kx k


    ,
2

jy j


    , 1, ,k j   
1

   we mean, respectively, the 

functions of one variable ( , ), 0 1ku x y y  , ( , ), 0 1ju x y x  . 

Let's use the following symbols: 

0 1 0 1

1, 1 ,1, 1 ,
1 ( ) 1, , 1 ( ) 1, ;

0, 1 , 0, 1 ,

jk
k j

k j

y Yx X
h x k H y j

x X y Y

 
    

  

  

 1/2 1/2 1/2 1/21 , , 1 , ;k k k j j jX x x Y y y   
       

1 1 1 1 1 1 1/ 2, / 2, , 1, , 1/ .k jx k y j k j         
  

0 2 0 2

1, 2 , 1, 2 ,
2 ( ) 1, , 2 ( ) 1, ;

0, 2 , 0, 2 ,

p s
p s

p s

x X y Y
h x p H y s

x X y Y

 
    

    

 1/2 1/2 1/2 1/22 , , 2 , ;p p p s s sX x x Y y y   
      

2 2 2 2 2 2 2/ 2, / 2, , 1, , 1/ .p sx p y s p s          
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Let us consider the operators  

   
1 1

0 0

1 1

( , ) ( , ) 1 ( , ) 1k k j j

k j

Tg x y g x y h x g x y H y
 

   

   
1 1

0 0

1 1

( , ) 1 1k j k j

k j

f x y h x H y
 

  . 

         
2 2

0 0

1 1

, , 2 , 2p p s s

p s

Tf x y f x y h x f x y H y
 

   

     
2 2

0 0

1 1

, 2 2p s p s

p s

f x y h x H y
 

 , 

If we introduce additional operators 

 
1

1 0

1

( , ) ( , ) 1k k

k

T g x y g x y h x


 ,  
1

2 0

1

( , ) ( , ) 1j j

j

T g x y g x y H y


 , 

     
2

1 0

1

, , 2p p

p

T f x y f x y h x


 ,      
2

2 0

1

, , 2s s

s

T f x y f x y H y


  

then the following identity holds: 

1 2 1 2( )Tg T T TT g   , 1 2 1 2( )Tf T T TT f   . 

The cubature formula  

 
 

1 1
,2

0 0

( , , ) ( , ) e
i Tg x y

f g Tf x y dxdy


     (2) 

is proposed for the approximate calculation of integral (1). 

Theorem 1. [11] Let  2,1( , ), ( , ) ,f x y g x y H M M , then  

2 2( , , ) ( , , )I f g f g  

 

1 1 1 1
(x,y) (x,y)

0 0 0 0

2 2
2 1

( , ) e ( , ) e

min 2;
16 16

i g i Tgf x y dxdy Tf x y dxdy

MM
M

 



  

 
  
 
 

   
 

Consider the integration of a rapidly oscillating exponential function 
of the form  

 
 

1 1
,2

0 0

( , ) e
i g x y

I g dxdy


    . (3) 
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For an approximate calculation of the integral (3), the following 

quadrature formula is proposed 

  
1 1

,2

0 0

( , ) e
i Tg x y

g dxdy


    .  (4) 

Theorem 2. Let  2,1( , ) ,g x y H M M , then  

2 2( , ) ( , )I g g  

 1 1 1 1
( , ) ( , )

2
10 0 0 0

min 2;
16

i g x y i Tg x y
M

e dxdy e dxdy 
 

   
 
 

    . 

Integration of a rapidly oscillating exponential function on the 

class  3,1 , ,Н M M M . Consider  3,1
1 , ,Н M M M  – a class of real func-

tions defined on  
3

0,1G   and such that  

     1,0,0 0,1,0 0,0,1
( , , ) ,  ( , , ) ,  ( , , )g x y z M g x y z M g x y z M   , 

     1,1,0 1,0,1 0,1,1
( , , ) ,  ( , , ) ,  ( , , )g x y z M g x y z M g x y z M   ,

 1,1,1
( , , )g x y z M . 

Definition 2. By the trace of the function ( , , )v x y z  on the lines 

  , , : , , ,
2

x y z x x y y x kjk k


      

,
1

, , , 1, 0 1
2

y j k j zj


          

we mean ( , , ), 0 1v x y z zjk   . The traces of the function on other lines 

are defined analogously. 

Let us introduce the following notation 

   1/2 1/2 1/2 1/2 1/2 1/2, , , , ,k k k j j s sX x x Y y y Z z zsj          , 

 1/2 1/21/2 1/21/2 1/2
, , , , ,s s sj j jk k k

X x x Y y y Z z z   
        , 

0 0
1 2

1, ,1, ,
( ) ( )

0, , 0, ,

jk
k j

k j

y Yx X
h x h y

x X y Y


 

 

 
 

 

0
3

1, ,
( )

0, ,

s
s

s

z Z
h z

z Z










 

0 0
21

1, ,1, ,
( ) ( )

0, , 0, ,

jk

jk
jk

y Yx X
h x h y

x X y Y


 

 

 
 
  

0

3

1, ,
( )

0, ,

s
s

s

z Z
h z

z Z










, 

1
, , , , , , 1,

2 2 2
k j sx k y j z s k j s

  
            ,  
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3/2
1 1 1 1 3/2

11 1 1, , , , , , 1,
2 2 2

sjk
x k y j z s k j s

  
            . 

Let us consider the operators  

0
1 1

1

( , , ) ( , , ) ( )k k

k

J f x y z f x y z h x


 , 0
2 2

1

( , , ) ( , , ) ( )j j

j

J f x y z f x y z h y


 , 

3 3

1

( , , ) ( , , ) ( )s s

s

J f x y z f x y z h z


 ,  

3/2

0
1 1

( , , ) ( , , ) ( )

1
k k

J f x y z f x y z h x

k





 , 

3/2

0
2 2

1

( , , ) ,( , , ) ( )
j j

j

J f x y z f x y z h y


  

3/2

0
3 3

1

( , , ) ( , , ) ( )s s

s

J f x y z f x y z h z


 . 

Let us consider the piecewise constant interflatation (O. M. Lytvyn's) 

operator  

     1 2 3( , , ) , , , , , ,Ef x y z J f x y z J f x y z J f x y z     

       1 2 2 3 1 3 1 2 3, , , , , , , ,J J f x y z J J f x y z J J f x y z J J J f x y z     
for which the properties 

       , , , , , 1, , , , , , , 1, ,k k j jEf x y z f x y z k Ef x y z f x y z j      

   , , , , , 1,Ef x y z f x y z ss s  . 
Consider the piecewise constant interlining operator constructed on 

the basis of interfletation  

         1 2 1 3 1 2 3 2 1, , , , , , , , , ,Ef x y z J J f x y z J J f x y z J J J f x y z J J f x y z      

         2 3 2 1 3 3 1 3 2 3 1 2, , , , , , , , , ,J J f x y z J J J f x y z J J f x y z J J f x y z J J J f x y z       

       1 2 1 3 2 3 1 2 3, , , , , , , ,J J f x y z J J f x y z J J f x y z J J J f x y z    . 

To calculate the integral  

 

1 1 1
( , , )

0 0 0

( , ) e ,  2 ,i g x y zI g dxdydz       (5) 

the following formula is proposed: 

 

1 1 1
( , , )

0 0 0

( , ) i Eg x y zg e dxdydz     . (6) 

For an approximate calculation of the integral (5) using formula (6), 

we obtain an approximation error on the class of differentiable functions. 

For the proof, we will use the estimate obtained in Theorem 3. 
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Theorem 3. [15] When calculating  

1 1 1

0 0 0

( ) ( , , )I g g x y z dxdydz     

using the cubature formula  

 
1 1 1

0 0 0

( , , )g Eg x y z dxdydz      

the estimate 
3
1

( ) ( )
64

M
I g g   will be satisfied. 

Theorem 4. For the cubature formula 
1 1 1

( , , )

0 0 0

( , ) i Eg x y zg e dxdydz       

the following approximation error estimate holds  
3

1

3
1

( , ) ( , ) min 2, 3
1664

M
I g Ф g M


  

 
      

 

. 

Proof. From Theorem 3, we use the estimate  
1 1 1

3
10 0 0

( , , ) ( , , )
64

M
g x y z Eg x y z dxdydz    . 

We find the estimate
1 1 1

0 0 0

( , , ) ( , , ) :Eg x y z Eg x y z dxdydz     

1 1 1

0 0 0

( , , ) ( , , )Eg x y z Eg x y z dxdydz   

       
1 1 1

1 2 3 1 2

0 0 0

, , , , , , , ,E g x y z E g x y z E g x y z E E g x y z      

       2 3 1 3 1 2 3 1 2, , , , , , , ,E E g x y z E E g x y z E E E g x y z E E g x y z      

       1 3 1 2 3 2 1 2 3, , , , , , , ,E E g x y z E E E g x y z E E g x y z E E f x y z      

       2 1 3 3 1 3 2 3 1 2, , , , , , , ,E E E f x y z E E f x y z E E f x y z E E E f x y z      

       1 2 1 3 2 3 1 2 3, , , , , , , ,E E f x y z E E f x y z E E f x y z E E E f x y z dxdydz      

         
1 1 1

1 2 3 1 2 1 3

0 0 0

, , , , , , , , , ,E g x y z E g x y z E g x y z E E g x y z E E g x y z         
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       1 2 3 2 1 2 3 2 1 3, , , , , , , ,E E E g x y z E E g x y z E E g x y z E E E g x y z      

     3 1 3 2 3 1 2, , , , , ,E E g x y z E E g x y z E E E g x y z dxdydz     

   

   

1 1 1

1 1 2 1 3 1 2 3

0 0 0

2 2 1 2 3 2 1 3

, ,

, ,

E E E E E E E E g x y z

E E E E E E E E g x y z

    

    

    

   3 3 1 3 2 3 1 2 , ,E E E E E E E E g x y z dxdydz      

   
1 1 1

1 1 2 1 3 1 2 3

0 0 0

, ,E E E E E E E E g x y z dxdydz        

   
1 1 1

2 2 1 2 3 2 1 3

0 0 0

, ,E E E E E E E E g x y z dxdydz        

   
1 1 1

3 3 1 3 2 3 1 2

0 0 0

, ,E E E E E E E E g x y z dxdydz        

   

   

1 1 1
3/2 3/2

2 2 2

1 1 1

2 2 2

1 1 1

, , , ,

, , , ,

k j s

k j s

x y z

k k j
k j s x y z

k s k sj

g x y z g x y z

g x y z g x y z dxdydz

  

  

  

  

  

   
 

       
1 1 1

3/2 3/2
2 2 2

1 1 1

2 2 2

1 11

, , , , , , , ,

k j s

k j s

x y z
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We use the following fact: 
( , , ) ( , , )i g x y z i Eg x y ze e  

 ( , , ) ( , , )
2

( , , ) ( , , )
2sin .

2

i g x y z Eg x y zg x y z Eg x y z
e


  

  

Let us estimate the approximation error  
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1 1 1 1 1 1
( , , ) ( , , )
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1 1 1
( , , ) ( , , )

0 0 0

i g x y z i Eg x y ze e dxdydz       

 1 1 1
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2

0 0 0

( , , ) ( , , )
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2
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
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2
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2
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dxdydz
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  
 
 
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1 1 1 1 1 1

0 0 0 0 0 0

( , , ) ( , , )
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2
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dxdydz dxdydz
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 
 
       



1 1 1 1 1 1
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2
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dxdydz g x y z Eg x y z

Eg x y z Eg x y z dxdydz


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       
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
  



    

3 3
1 1

3 3
1 1

2min 1, 3 min 2, 3
2 16 1664 64

M M
M M

 


     
              

    

. 

The theorem is proven. 

Results of the computational experiment. When studying numeri-

cal methods for three-dimensional oscillatory integrals, the properties that 

determine the complexity of the problem and the nature of the error are 

already evident in the two-dimensional case. In this regard, it is advisable 

to conduct a numerical experiment for a function of two variables, and the 

results obtained can be used for a qualitative assessment of the behaviour 

of the method in the three-dimensional case.  
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Let us consider the function 

3

2( )( , , ) xyzg x y z e  

 
Fig. 1. Three-dimensional point visualization  

of the function values ( , , )g x y z  with colour coding 

The function 

3

2( )( , , ) xyzg x y z e  is a generalization of the two-

dimensional function 

3

2( )( , ) xyg x y e .  

 

Fig. 2. 3D graph of the function ( , )g x y  
A comparison of the graph of the function of two variables (Fig. 2) 

and the corresponding cross-sections of the function of three variables 

when the value of one of the variables is fixed shows their complete corre-

spondence (Figs. 3-5).  
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Fig. 3. Function ( , , )g x y z   

when 0 0.5z   

 

Fig. 4. Function ( , , )g x y z   

when 
0 0.5y   

 

Fig. 5. Function ( , , )g x y z  at 0 0.5x   

For the function of two variables, a numerical experiment was con-

ducted to investigate in detail the influence of the parameters 

1 2,   , and М  on the accuracy of numerical integration.  

The experiment was conducted for the function 

3

2( )( , ) xyg x y e . The 

function ( , )g x y  belongs to the class  2,1 ,H M M , where 
3

2
M e , 

9

2
M e . 
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Fig. 6. Traces of the function  

on the lines , 1,...,kx x k   

 
Fig. 7. Traces of the function  

on the lines , 1,...,jy y j   

 

Fig. 8. Function values at nodal points , , , 1,...,k jx x y y k j    

Figs. 9-10 show three-dimensional graphs of the real and imaginary 

parts of the subintegral function ( , )i g x ye   at 10  . From these figures, 

we can see that even with a smooth phase function ( , )g x y , the subinte-

gral function acquires a pronounced oscillatory character. 

 

Fig. 9. 3D graph of  ( , )
Re

i g x y
e


, 

10   

 
Fig. 10. 3D graph of  ( , )

Im
i g x y

e


, 

10   
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As the parameter   increases, the frequency of oscillations increas-

es. We can see this in Figs. 11-12 at 160  . 

 

Fig. 11. 3D graph  ( , )
Re

i g x y
e


, 

160   

 
Fig. 12. 3D graph  ( , )

Im
i g x y

e


, 

160   
For a detailed analysis of the influence of the oscillation parameter 

  and the division  on the accuracy of numerical integration and in or-

der to compare the obtained error estimates with theoretical ones, a series 

of numerical experiments was performed. The tables show the results of 

calculations for different values of  . 

Table 1 

Calculation results for 10  , reference value of the integral 

 2 , 0.2278189646082499 + 0.1991111463311658iI g   

  2
, g     2 2

, ,I g g   t  theoretical error 

32 
0.2278166992662413 + 

0.1991155315055722i 
4.9357399638e-06 2.345508e-02 

64 
0.2278188638642554 + 

0.1991112858753887i 
1.7211026284e-07 5.863770e-03 

12 
0.2278189588368593 + 

0.1991111539807172i 
9.5825146008e-09 1.465943e-03 

256 
0.2278189642550256 + 

0.1991111467943563i 
5.8250566720e-10 3.66486e-04 

512 
0.2278189645862877 + 

0.1991111463598729i 
3.6144612238e-11 9.162140e-05 

1024 
0.2278189646068789 + 

0.1991111463329548i 
2.2539628907e-12 2.290540e-05 
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Table 2 
Calculation results at 40  , reference value of the integral 

 2 , 0.1067062929189802 + 0.1085966978209356iI g   

  2
, g     2 2

, ,I g g   t  theoretical error 

32 
0.1066203629718906 + 
0.1086594747825144i 

1.0641852617e-04 9.382032e-02 

64 
0.1067460877089656 + 
0.1085472446431358i 

6.3476311365e-05 2.345508e-02 

12 
0.1067063563388021 + 
0.1085967474983053i 

8.0560007814e-08 5.863770e-03 

256 
0.1067062950844278 + 
0.1085966995478552i 

2.7697318077e-09 1.465943e-03 

512 
0.1067062930401892 + 
0.1085966979169320i 

1.5461865937e-10 3.664856e-04 

1024 
0.1067062929263625 + 
0.1085966978267644i 

9.4059812274e-12 9.162140e-05 
 

Table 3 
Calculation results at 80  , reference value of the integral 

 2 , 0.0723874992954767 + 0.0775883379028776iI g   

  2
, g     2 2

, ,I g g   t  theoretical error 

32 
0.0723614746497498 + 
0.0777878595754382i 

2.0121177900e-04 1.876406e-01 

64 
0.0723318856918027 + 
0.0775744279864674i 

5.7326771130e-05 4.691016e-02 

12 
0.0723790740671419 + 
0.0776040305528926i 

1.7811337316e-05 1.172754e-02 

256 
0.0723874891873205 + 
0.0775883389270071i 

1.0159904640e-08 2.931885e-03 

512 
0.0723874989439382 + 
0.0775883379230748i 

3.5211826050e-10 7.329713e-04 

1024 
0.0723874992757894 + 
0.0775883379038215i 

1.9709895301e-11 1.832428e-04 
 

Table 4 

Calculation results at 160  , reference value of the integral 

 2 , 0.0488723915931327 + 0.0546273706291931iI g   

  2
, g     2 2

, ,I g g   t  theoretical error 

32 
0.0492121569121379 + 
0.0545134278246065i 

3.5836215581e-04 
 

3.752813e-01 

64 
0.0488741262706387 + 

0.0546801209405205i 
5.2778825784e-05 9.382032e-02 
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Continuation of the table 4 

12 
0.0488798958008194 + 

0.0546252931893292i 
7.7864555090e-06 2.345508e-02 

256 
0.0488723919111890 + 

0.0546273718372643i 
2.4391440926e-06 5.863770e-03 

512 
0.0488723919111890 + 

0.0546273718372643i 
1.2492380771e-09 1.465943e-03 

1024 
0.0488723916041078 + 

0.0546273706703357i 
4.2581327138e-11 3.664856e-04 

 

Conclusions. The article is devoted to the numerical integration of 

rapidly oscillating functions of several variables, which is an important 

direction in mathematical modelling of processes, in particular in digital 

image processing problems. Cubic formulas for the approximate calcula-

tion of double and triple integrals of oscillating exponentials are presented. 

Cubic formulas use traces on mutually perpendicular lines as function data 

in their construction. Error estimates are presented for a class of differenti-

able functions. A numerical experiment presents an analysis of the method 

for a function of two variables, which makes it possible to estimate the 

potential capability of the algorithm in a three-dimensional case.  
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ЧИСЕЛЬНЕ ІНТЕГРУВАННЯ ШВИДКООСЦИЛЬОВАНИХ 
ФУНКЦІЙ ІЗ ВИКОРИСТАННЯМ ОПЕРАТОРІВ  

ВІДНОВЛЕННЯ ЗА ДАНИМИ НА ЛІНІЯХ 

У сучасному математичному моделюванні фізичних та технічних 

процесів актуальною є проблема обробки й аналізу функцій багатьох 

змінних, значення яких відомі на системах ліній. Не виключенням є і 

задачі цифрової обробки зображень, зокрема чисельного інтегрування 

функцій з осциляцією. У задачах цифрової обробки зображень значна 

частина інформації про досліджуваний об’єкт надходить у вигляді 

вимірювань уздовж окремих напрямів або ліній, що є характерним 

для томографічних методів, дистанційного зондування та систем візу-
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алізації. Розробка та застосування ефективних методів чисельного ін-

тегрування швидкоосцильованих функцій на основі даних на системі 

ліній є важливою передумовою підвищення точності реконструкції, 

фільтрації та аналізу цифрових зображень. 

Дослідження в статті присвячено чисельному інтегруванню щвидкоо-

сцильованих функцій декількох змінних. Наведено кубатурну формули 

наближеного обчислення подвійних інтегралів від осцильованої експоне-

нти. Кубатурна формула в своїй побудові в якості даних про функцію ви-

користовує сліди на взаємно перпендикулярних лініях. На класі диферен-

ційовних функцій представлено оцінки похибки наближення.  

В роботі багато уваги приділено тестуванню кубатурної формули 

наближеного обчислення подвійних інтегралів від осцильованої екс-

поненти. Отримані результати дозволяють пояснити вибір параметрів, 

підтвердити теоретичні оцінки похибки. Чисельний експеримент на-

буває особливої значущості, оскільки є базою для аналізу та прогно-

зування поведінки методу у тривимірному випадку. Це пов’язано з 

тим, що зі збільшенням розмірності зростає обсяг необхідної інфор-

мації про підінтегральну функцію, стає складніша структура похибки 

та істотно збільшуються обчислювальні витрати.  

В роботі представлено кубатурну формулу наближеного обчис-

лення потрійних інтегралів від осцильованої експоненти. Значення 

про функцію надаються як сліди функції на системі взаємно перпен-

дикулярних прямих. Отримано оцінку похибки наближення на класі 

диференційовних функцій.  

Ключові слова: математичне моделювання процесів, цифрова обро-

бка зображень, чисельне інтегрування швидкоосцильованих функцій ба-

гатьох змінних, кубатурна формула, відновлення функцій на лініях. 

Отримано: 13.12.2025 
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