Hyperbolic Boundary Value Problem for Semibounded Piecewise-Homogeneous Solid Cylinder

Andrey Petrovych Gromyk, Ivan Myhaylivich Konet, Tetyana Myhaylovna Pylypiuk


By means of the method of integral and hybrid integral transforms, in combination with the method of main solutions (influence matrices and Green matrices) the integral image of exact analytical solution of hyperbolic boundary value problem of mathematical physics for semibounded piecewise-homogeneous solid cylinder is obtained for the first time

Повний текст:

PDF (English)


Hadamard J. The Cauchy problem for linear partial differential equations of para-bolic type / J. Hadamard. — Moscow : Nauka, 1978.

Gording L. Cauchy's problem for hyperbolic equations / L. Gording. — Мoscow : IL, 1961.

Mytropol’skiy Yu. Asymptotic methods of investigation of quasiwave equa-tions of hyperbolic type / Yu. Mytropol’skiy, G. Khoma and M. Gromiak. — Кyiv : Naukova Dumka. 1991.

Samoilenko A. Numerical-analytic methods in the theory of periodic solutions of partial differential equations / A. Samoilenko, B. Tkach. — Kyiv : Naukova Dumka, 1992.

Smirnov M. Degenerating elliptic and hyperbolic equations / M. Smirnov. — Мoscow : Nauka, 1962.

Cherniatyn V. Fourier method in mixed problem for partial differential equations / V. Cherniatyn. — Мoscow : Izd. MGU, 1991.

Sergienko I. Mathematic modeling and the study of processes in heterogeneous environments / I. Sergienko, V. Skopetsky, V. Deineka. — Kyiv : Naukova Dumka, 1991.

Deineka V. Models and methods of solving of problems with conjugate condi-tions / V. Deineka, I. Sergienko, V. Skopetsky. — Kyiv : Naukova Dumka, 1998.

Konet I. The temperature fields in the piece-homogeneous cylindrical domains / I. Konet, M. Leniuk. — Chernivtsi : Prut, 2004.

Gromyk A. The temperature fields in the piece-homogeneous spatial environments / A. Gromyk, I. Konet, M. Leniuk. — Kamenets-Podilsky : Ab-etka-Svit, 2011.

Konet I. Hyperbolic boundary-value problems of mathematical physics in piecewise homogeneous spacial environments / I. Konet. — Kamenets-Podilsky : Abetka-Svit, 2013.

Konet I. Parabolic boundary value problems in piecewise homogeneous envi-ronments / I. Konet, T. Pylypiuk. — Kamenets-Podilsky : Abetka-Svit, 2016.

Perestiuk M. The theory of equations of mathematical physics / M. Perestiuk, V. Marynets’. — Kyiv : Lybid’, 2006.

Sneddon I. Fourier transforms / I. Sneddon. — Мoscow : IL, 1955.

Тranter К. Integral transformations in mathematical physics / К. Тranter. — Мoscow : Gostehteorizdat, 1956.

Bybliv O. Integral Hankel transform of the 1st kind for piecewise-homogeneous seg¬ments with application to problems of mathematical physics / O. Bybliv, M. Lenyuk // Computational and Applied Mathematics. — 1988. — Issue 65. — P. 24-34.

Shilov G. Mathematical analysis. Second special course / G. Shilov. — Moscow : Nauka, 1965.

Gelfand I. Some questions in the theory of differential equations / I. Gelfand, G. Shilov. — Мoscow : Fizmatgiz, 1958.