Параболічні крайові задачі в кусково-однорідному клиновидному циліндрично-круговому просторі з порожниною

Автор(и)

  • Іван Михайлович Конет Кам'янець-Подільський національний університет імені Івана Огієнка, м. Кам'янець-Подільський, Україна
  • Тетяна Михайлівна Пилипюк Кам'янець-Подільський національний університет імені Івана Огієнка, м. Кам'янець-Подільський, Україна

DOI:

https://doi.org/10.32626/2308-5878.2018-18.86-99

Анотація

У пропонованій статті методом інтегральних і гібридних інтегральних перетворень у поєднанні з методом головних розв’язків (матриць впливу та матриць Гріна) вперше побудовано єдині точні аналітичні розв’язки параболічних крайових задач математичної фізики в кусково-однорідному за радіальною змінною клиновидному за кутовою змінною циліндрично-круговому просторі з циліндричною порожниною.

Розглянуто випадки задання на гранях клина крайових умов Діріхле і Неймана та їх можливих комбінацій (Діріхле–Неймана, Неймана–Діріхле).

Для побудови розв’язків досліджуваних задач застосовано скіченне інтегральне перетворення Фур’є щодо кутової змінної, інтегральне перетворення Фур’є на декартовій осі щодо аплікатної змінної та гібридне інтегральне перетворення типу Вебера на полярній осі з n точками спряження щодо радіальної змінної.

Послідовне застосування інтегральних перетворень дозволяє звести тривимірні початково-крайові задачі до задачі Коші для звичайного лінійного неоднорідного диференціального рівняння 1-го порядку, єдиний розв’язок якої виписано в замкнутому вигляді.

Застосування обернених інтегральних перетворень відновлює в явному вигляді розв’язки розглянутих задач через їх інтегральне зображення.

Посилання

Гельфанд И. М. Некоторые вопросы теории дифференциальных уравнений / И. М. Гельфанд, Г. Е. Шилов. — М. : Физматгиз, 1958. — 274 с.

Городецький В. В. Граничні властивості гладких у шарі розв’язків рівнянь параболічного типу / В. В. Городецький. — Чернівці : Рута, 1998. — 225 с.

Громик А. П. Температурні поля в кусково-однорідних просторових середовищах / А. П. Громик, І. М. Конет, М. П. Ленюк. — Кам’янець-Подільський : Абетка-Світ, 2011. — 200 с.

Дейнека В. С. Модели и методы решения задач в неоднородных средах / В. С. Дейнека, И. В. Сергиенко. — К. : Наук. думка, 2001. — 606 с.

Дейнека В. С. Модели и методы решения задач с условиями сопряжения / В. С. Дейнека, И. В. Сергиенко, В. В. Скопецкий. — К. : Наук. думка, 1998. — 614 с.

Житарашу Н. В. Параболические граничные задачи / Н. В. Житарашу, С. Д. Эйдельман. — Кишинев : Штиинца, 1992. — 327 с.

Загорский Т. Я. Смешанные задачи для систем дифференциальных уравнений с частными производными параболического типа / Т. Я. Загорский. — Львов : Изд-во ЛГУ, 1961. — 115 с.

Ивасишин С. Д. Матрица Грина параболических задач / С. Д. Ивасишин. — К. : Вища школа, 1990. — 199 с.

Конет І. М. Гіперболічні крайові задачі математичної фізики в кусково-однорідних просторових середовищах / І. М. Конет. — Кам’янець-Подільський : Абетка-Світ, 2013. — 120 с.

Конет І. М. Параболічні крайові задачі в кусково-однорідних середовищах / І. М. Конет, Т. М. Пилипюк. — Кам’янець-Подільський : Абетка-Світ, 2016. — 244 с.

Конет І. М. Стаціонарні та нестаціонарні температурні поля в циліндрично-кругових областях / І. М. Конет, М. П. Ленюк. — Чернівці : Прут, 2001. — 312 с.

Конет І. М. Параболічні крайові задачі в кусково-однорідних циліндрично-кругових середовищах / І. М. Конет, Т. М. Пилипюк. — Кам’янець-Подільський : Абетка-Світ, 2017. — 80 с.

Ладыженская О. А. Линейные и квазилинейные уравнения параболического типа / О. А. Ладыженская, В. А. Солонников, Н. Н. Уральцева. — М. : Наука, 1967. — 736 с.

Ландис Е. М. Уравнения второго порядка эллиптического и параболического типов / Е. М. Ландис. — М. : Наука, 1971. — 288 с.

Матійчук М. І. Параболічні та еліптичні крайові задачі з особливостями / М. І. Матійчук. — Чернівці : Прут, 2003. — 248 с.

Перестюк М. О. Теорія рівнянь математичної фізики / М. О. Перестюк, В. В. Маринець. — К. : Либідь, 2006. — 424 с.

Пукальський І. Д. Крайові задачі для нерівномірно параболічних та еліптичних рівнянь з виродженостями і особливостями / І. Д. Пукальський. — Чернівці : Рута, 2008. — 253 с.

Сергиенко И. В. Математическое моделирование и исследование процессов в неоднородных средах / И. В. Сергиенко, В. В. Скопецкий, В. С. Дейнека. — К. : Наук. думка, 1991. — 432 с.

Снеддон И. Преобразования Фурье / И. Снеддон. — М. : ИЛ, 1955. — 668 с.

Трантер К. Дж. Интегральные преобразования в математической физике / К. Дж. Трантер. — М. : Гостехтеориздат, 1956. — 204 с.

Фридман А. Уравнения с частными производными параболического типа / А. Фридман. — М. : Мир, 1968. — 428 с.

Шилов Г. Е. Математический анализ. Второй специальный курс / Г. Е. Шилов. — М. : Наука, 1965. — 328 с.

##submission.downloads##

Опубліковано

2018-11-12