Сумісне наближення (ψ, β) — інтегралів сумами Фейєра в метриці Lp
DOI:
https://doi.org/10.32626/2308-5878.2019-20.92-100Анотація
Відомо, що довільній сумовній періодичній функції відповідає її ряд Фур’є. Тому природно її наближати тригонометричними многочленами , що є частинними сумами цього ряду, їх називають сумами Фур’є. Але інколи суми Фур’є даної функції дуже повільно збігаються до неї, а інколи і розбігаються (приклад неперервної функції із розбіжним в деяких точках рядом Фур’є був наведений Дюбуа-Реймондом у 1876 р.). Цей факт спонукав математиків шукати інші послідовності тригонометричних поліномів, які б збігалися до породжуючої їх функції, які б збігалися до неї рівномірно на всьому просторі. Зрозуміло, що найвдалішою в розумінні швидкості збіжності до функції є послідовність многочленів її найкращого наближення. Але, на жаль, оператор найкращого наближення не є лінійним. Це в великій мірі ускладнює побудову многочленів найкращого наближення, а, отже, їх використання.
Якщо розглядати лише лінійні методи підсумовування рядів Фур’є, то великий клас таких методів дає матричне підсумовування. Одним з цих методів є метод Фейєра, метод середніх арифметичних перших n сум Фур’є.
У цій статті знайдено асимптотичні рівності при n → ∞ для верхньої межі величини сумісного наближення сумами Фейєра порядку n функцій, що мають похідну в сенсі Степанця, у випадку досягнення насиченості в метриці простору сумовних в p-тому степені функцій. При цьому виділено головний член асимптотичного розкладу та вказано порядок залишкового члена.Посилання
Stepanets A. I. Methods of approximation theory : 2 p. / A. I. Stepanets // Works of In-te of Mathematics NAS of Ukraine. — 2002 — № 40. — 427 p.
Bushev D. N. Approximation of classes of continuous periodic functions by Zygmund’s sums / D. N. Bushev. — Kyiv, 1984. — 62 p. (Prepr. / AS USSR. In-te of Mathematics; 84.56).
Korneichuk N. P. Extreme problems of approximation theory / N. P. Korneichuk. — M. : Nauka, 1976. — 320 p.
Sorych N. M. Joint approximation of functions and their derivatives by Fejer’s sums / N. M. Sorych. — Kyiv, 1985. — P. 16–26 (Prepr. / AS USSR. In-te of Mathematics; 84.27).
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).