Існування періодичних розв’язків в системі нелінійних осциляторів зі степеневими потенціалами на двовимірній ґратці
DOI:
https://doi.org/10.32626/2308-5878.2020-21.5-16Анотація
Стаття присвячена вивченню нескінченновимірної гамільтонової системи, яка описує динаміку нескінченної системи лінійно зв’язаних нелінійних осциляторів на двовимірній ґратці. Рівняння руху цієї системи представляють собою зчисленну систему звичайних диференціальних рівнянь. Останню систему зручно розглядати як диференціально-операторне рівняння у гільбертовому просторі дійсних двохсторонніх послідовностей. Розглядається задача про існування періодичних розв’язків для таких систем зі степеневими потенціалами. Основними умовами існування цих розв’язків є просторова періодичність коефіцієнтів оператора лінійної взаємодії осциляторів та додатність цього оператора. У цій статті показано, що періодичні розв’язки можна побудувати за допомогою методу умовної мінімізації. Для цього побудовано функціонал, критичні точки якого є шуканими періодичними розв’язками. Цей функціонал представлено у вигляді різниці квадратичної і неквадратичної частин. Далі розглянуто задачу умовної мінімізації квадратичної частини функціоналу за умови, що неквадратична частина стала. За допомогою методу множників Лагранжа встановлено, що періодичні розв’язки даної системи лінійно залежать від розв’язків розглянутої задачі умовної мінімізації, зокрема, коефіцієнт лінійної залежності виражається через множник Лагранжа. За допомогою дискретного варіанту принципу концентрованої компактності доведено, що розглянута задача умовної мінімізації має розв’язок, а отже, існують періодичні розв’язки вихідної системи. Зокрема, показано, що для довільної мінімізуючої послідовності квадратичної частини побудованого функціоналу виконується можливість «концентрація» принципу концентрованої компактності, що дозволило довести обмеженість цієї послідовності. Більше того, доведено, що для достатньо великих значень періодів ці розв’язки не є сталими.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).