Параболічні крайові задачі в необмеженому кусково-однорідному клиновидному порожнистому циліндрі
DOI:
https://doi.org/10.32626/2308-5878.2020-21.69-83Анотація
У пропонованій статті методом класичних інтегральних і гібридних інтегральних перетворень у поєднанні з методом головних розв’язків (матриць впливу та матриць Гріна) вперше побудовано єдині точні аналітичні розв'язки параболічних крайових задач математичної фізики в необмеженому за змінною z кусково-однорідному за радіальною змінною r клиновидному за кутовою змінною φ порожнистому циліндрі.
Розглянуто випадки задання на гранях клина крайових умов Діріхле і Неймана та їх можливих комбінацій (Діріхле — Неймана, Неймана — Діріхле).
Для побудови класичних розв'язків досліджуваних початково-крайових задач застосовано скінченне інтегральне перетворення Фур'є щодо кутової змінної, інтегральне перетворення Фур'є на декартовій осі щодо аплікатної змінної та гібридне інтегральне перетворення типу Ганкеля 2-го роду на сегменті полярної осі з n точками спряження щодо радіальної змінної.
Послідовне застосування інтегральних перетворень за геометричними змінними дозволяє звести тривимірні початково-крайові задачі спряження до задачі Коші для звичайного лінійного неоднорідного диференціального рівняння 1-го порядку, єдиний розв'язок якої виписано в замкнутому вигляді.
Застосування обернених інтегральних перетворень відновлює в явному вигляді розв'язки розглянутих задач через їх інтегральне зображення.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).