Обґрунтування методу усереднення для нелокальної m-частотної задачі із лінійно перетвореними аргументами
DOI:
https://doi.org/10.32626/2308-5878.2020-21.127-137Анотація
Досліджено систему диференціальних рівнянь із запізненням на скінченному проміжку із повільними та швидкими змінними. Запізнення в системі характеризується лінійно перетвореними аргументами у повільних і в швидких змінних. Для повільних і швидких змінних задано інтегральні умови. Характерною особливістю таких систем є поява резонансів у процесі еволюції. Умова резонансу в системі містить залежність від запізнень у швидких змінних.
Ефективним методом дослідження багаточастотних систем є метод усереднення, обґрунтування якого для систем без запізнення аргументу отримано в працях В.І. Арнольда, Є. О. Гребенікова, М. М. Хапаєва, А. М. Самойленка, Р. І. Петришина. У даній роботі використано методику, запропоновану А. М. Самойленком, яка ґрунтується на оцінці осциляційних інтегралів. У даній роботі процедура усереднення за швидкими змінними здійснена як у системі рівнянь, так і в інтегральних умовах. В усередненій задачі змінні відокремлені й задача для повільних змінних розв’язується незалежно від швидких змінних. Знаходження швидких змінних зводиться до задачі інтегрування.
Побудовано приклад одночастотної системи з інтегральними умовами, на якому проілюстровано отриманий результат, одержано оцінки похибки та величини малого параметра.Доведено існування єдиного розвитку задачі в класі неперервно-диференційованих функцій. Отримано оцінку похибки методу усереднення, яка явно залежить від малого параметра та кількості швидких змінних і лінійно перетворених аргументів у них. Також знайдено оцінку величини малого параметра. Умова проходження резонансних зон зводиться до перевірки відмінності від нуля визначника Вронського, побудованого системою частот із врахуванням кількості лінійно перетворених аргументів.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).