ЕВОЛЮЦІЯ РІВНЯНЬ ДЛЯ МАРГІНАЛЬНИХ ОПЕРАТОРІВ КОРЕЛЯЦІЇ

Автор(и)

  • Victor Ivanovich Gerasimenko Institute of Mathematics of NAS of Ukraine, Kyiv, Україна
  • Denis Olegovich Polishchuk Taras Shevchenko National University of Kyiv, Україна

DOI:

https://doi.org/10.32626/2308-5878.2011-5.44-60

Ключові слова:

nonlinear quantum BBGKY hierarchy, von Neumann hierarchy, correlation operator, quantum many-particle system.

Анотація

This paper is devoted to the problem of the description of nonequilibrium correlations of quantum many-particle systems. A non-perturbative solution of the Cauchy problem of the nonlinear quantum BBGKY hierarchy for marginal correlation operators is constructed as an expansion over particle clusters which evolution is governed by the corresponding-order cumulant of the nonlinear groups of operators generated by the von Neumann hierarchy.

Посилання

Arnold A. Mathematical properties of quantum evolution equations / A. Arnold // Lecture Notes in Math. — 2008. — Vol. 1946. — P. 45—100.

Erdös L. Derivation of the cubic nonlinear Schrodinger equation from quantum dynamics of many-body systems / L. Erdös, B. Schlein, H.-T. Yau // Invent. Math. — 2007. — Vol. 167. — P. 515—614.

Erdös L. Derivation of the Gross-Pitaevskii Equation for the Dynamics of Bose-Einstein Condensate / L. Erdös, B. Schlein, H.-T. Yau // Ann. Math. — 2010. — Vol. 172. — P. 291—370.

Fröhlich J. Mean-field and classical limit of many-body Schrodinger dynamics for bosons / J. Fröhlich, S. Graffi, S. Schwarz // Commun. Math. Phys. — 2007. — Vol. 271. — P. 681—697.

Pezzotti F. Mean-field limit and semiclassical expansion of quantum particle system / F. Pezzotti, M. Pulvirenti // Ann. Henri Poincar. — 2009. — Vol. 10. — P. 145—187.

Saint-Raymond L. Kinetic models for superuids: a review of mathematical results / L. Saint-Raymond // C. R. Physique. — 2004. — Vol. 5. — P. 65—75.

Gerasimenko V. I. A description of the evolution of quantum states bymeans of the kinetic equation / V. I. Gerasimenko, Zh. A. Tsvir //. J. Phys. A: Math. Theor. — 2010. — Vol. 43.

Gerasimenko V. I. Heisenberg picture of quantum kinetic evolution in meanfield limit / V. I. Gerasimenko // Kinet. Relat. Models. — 2011. — Vol. 4. — P. 385—399.

Gerasimenko V. I. Evolution of correlations of quantum many-particle systems / V. I. Gerasimenko, V. O. Shtyk // J. Stat. Mech. Theory Exp. — 2010. — Vol. 3. — P. 24.

Gerasimenko V. I. Dynamics of correlations of Bose and Fermi particles / V. I. Gerasimenko, D. O. Polishchuk // Math. Meth. Appl. Sci. — 2011. — Vol. 34. — P. 76—93.

Боголюбов M. M. Лекції з квантової статистики. Проблеми статистичної механіки квантових систем / M. M. Боголюбов. — К. : Рад. школа, 1949.

Petrina D. Ya. Mathematical Foundations of Quantum Statistical Mechanics. Continuous Systems / D. Ya. Petrina. — Dordrecht : Kluwer, 1995.

Dautray R. Mathematical Analysis and Numerical Methods for Science and Technology / R. Dautray, J. L. Lions. — Berlin : Springer, 1992.

Cercignani C. Many-Particle Dynamics and Kinetic Equations / C. Cercignani, V. I. Gerasimenko, D. Ya. Petrina. — Dordrecht : Kluwer, 1997.

Polishchuk D. O. BBGKY hierarchy and dynamics of correlations / D. O. Polishchuk // Ukrainian J. Phys. — 2010. — Vol. 55. — P. 593-598.

Yvon J. Actualites Scientifiques et Industrielles / J. Yvon. — Paris : Hermann, 1935. — Vol. 49.

Green M. S. Boltzmann equation from the statistical mechanical point of view / M. S. Green // J. Chem. Phys. — 1956. — Vol. 25. — P. 836—855.

##submission.downloads##

Опубліковано

2011-05-06