Метод клітинних автоматів для моделювання фізико-хімічних процесів на нанокаталізаторі
DOI:
https://doi.org/10.32626/2308-5878.2021-22.27-38Анотація
У роботі розглянуто новий підхід для опису динамічних фізико-хімічних процесів на нанокаталізаторі. Зростаючі труднощі опису каталізу гетерогенної хімічної реакції нанокаталізаторами обумовлені тим, що описувані явища нелінійні, дисипативні, в ряді випадків супроводжуються автоколивальним і стохастичним характером протікання і не можуть бути описані застосовуваними традиційними математичними моделями, наприклад, заснованими на системах диференційних рівнянь. Для вирішення розглянутого в публікації завдання в роботі запропоновано застосовувати, як альтернативу диференціальним рівнянням для неперервної математики, дискретні моделі, які є розширеннями класичного клітинного автомата фон Неймана. В цьому випадку клітинний автомат розглядається як дискретний вираз просторово-часової функції і виконує ту ж задачу, що і диференціальні рівняння в часткових похідних. Розроблено стадійний механізм реакції, що враховує рекомбінацію атомів, утворення коливально-збуджених молекул, їх дифузію і релаксацію, а також клітинно-автоматну модель гетерогенної хімічної реакції на нанокаталізаторі з системою просторово розподілених нанокластерів на поверхні. Наводяться результати КА-моделювання та показано, що розроблений в роботі асинхронний клітинний автомат дозволяє моделювати хімічну реакцію, в тому числі рекомбінації атомів, на поверхні нанокаталізатора з просторово розподіленими нанокластерами на поверхні. Побудована КА-модель описує кінетику процесу в реальному фізичному часі і використовує фізичні перетини і константи взаємодії
Посилання
Grankin D. V., Styrov V. V., Simchenko S. V., Grankin V. P., Gural’nik O. A. Oxidation of Hydrogen on Palladium: Chemicurrents in the Schottky Nanodiode. Russian Journal of Physical Chemistry A. 2017. Vol. 91. № 2. P. 295-300.
Toffolli T. Cellular Automata as an Alternative to (rather than an Approximation of) Differential Equations in Modeling Physics. Physica D. 1984. Vol. 10. P. 117-127.
Фон Нейман Дж. Теория самовоспроизводящихся автоматов. Москва: Мир, 1971. 384 с.
Wolfram S. Statistical mechanics of Cellular automata. Reviews of Modern Physics. 1993. Vol. 35. P. 601-643.
Bandman O. Cellular Automata Composition Techniques for Spatial Dynamics Simulation. In A. G. Hoekstra, J. Kroc, P. M. A. Sloot (eds). Simulating Complex Systems by Cellular Automata. Berlin: Springer, 2010. P. 81-116.
Вandman O. L. Cellular-automata models of natural processes; implementation on supercomputers. Prikladnaya Diskretnaya Matematika. 2017. Vol. 35. P. 102-121.
Sharifulina A. E. Parallel implementation of catalytic reaction (CO + O2 – CO2) by asynchronous cellular automata. Вестник ЮУрГУ. Серия: Вычислительная математика и информатика. 2012. № 47 (306). С. 112-126.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).