Блочно-симетричні базиси і багатовимірні формули Ньютона
DOI:
https://doi.org/10.32626/2308-5878.2025-28.163-176Анотація
У роботі розвинена конструкція блочно-симетричних інваріантів для послідовностей багатовимірних блоків та отримані багатовимірні формули Ньютона, які пов’язують три природні системи базисів. Дослідження спирається на введення блочних степеневих сум, а також повних і елементарних блочно-симетричних багаточленів, для яких побудовані багатозмінні формальні генеруючі степеневі ряди і встановлено фундаментальну тотожність векторного типу. Показано, що логарифмічна форма цієї тотожності призводить до системи рекурентних співвідношень Ньютона-Жирара з явними комбінаторними коефіцієнтами, що забезпечує коректний облік мономів у багатовимірному випадку. Отримані співвідношення сумісні з класичними формулами та не потребують додаткових припущень щодо комутативності перетворень або спеціальної нормалізації коефіцієнтів. Доведено, що переходи між зазначеними базисами мають трикутний характер щодо природного часткового порядку на мультиіндексах, що забезпечує єдність розкладів і оберненість відповідних лінійних перетворень. Доведено, що блочні степеневі суми утворюють базис інваріантної підалгебри, а повні і елементарні функції надають альтернативні розкладання з чіткими правилами перерахунку коефіцієнтів.
Детально розглянуто нескінченновимірний випадок із усіченням за кількістю блоків. Показано, що усічені представлення утворюють зростаючу за включенням послідовність (кожне наступне містить попереднє) і є рівномірно обмеженими на будь-якій фіксованій множині, що забезпечує рівномірну на компактних множинах збіжність до вихідного інваріанту. На основі цих властивостей сформульовано висновок про мінімальний набір твірних для кожного фіксованого сумарного ступеня. Для будь-якого фіксованого степеня всі інваріанти цього степеня генеруються елементами того ж степеня з будь-якої з трьох систем, при цьому усічені за кількістю блоків ряди рівномірно на компактах сходяться до відповідних повних блочно-симетричних багаточленів. Розроблена схема узагальнює класичну теорію симетричних функцій на блоковий випадок та формує єдину методологію для побудови базисів, взаємних переходів та контролю збіжності, що створює основу для подальших досліджень у галузі комбінаторики та алгебраїчного аналізу інваріантів
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).