Рамсеївські числа для прямокутників у багатокольорових розфарбуваннях

Автор(и)

DOI:

https://doi.org/10.32626/2308-5878.2025-28.54-66

Анотація

У статті розглянуто рамсеївський підхід до аналізу дискретних двовимірних структур, у яких за зростання розмірів неминуче виникають регулярні підконфігурації. Вихідною є ідея теорії Рамсея про те, що в достатньо великій системі «повний хаос» неможливий: незалежно від способу побудови обов’язково з’являється впорядкована підструктура. Досліджується багатокольорове заповнення прямокутної ґратки a × b із забороною однотонного осьово-орієнтованого прямокутника, який розглядається як базовий локальний шаблон упорядкування.

Уведено порогові характеристики, що описують межі існування допустимих конфігурацій: встановлюються області параметрів, де заборонений шаблон ще можна уникати (існують контрприклади), та області, де його поява стає гарантованою для будь-якого розфарбування. Для дво- та трикольорових випадків отримано оцінки, пов’язані з площею максимальних нетривіальних контрприкладів, а також визначено мінімальні за площею прямокутники, які вже не можуть бути контрприкладами. Таким чином, результати задають критичні масштаби, після яких локальна регулярність проявляється неминуче.

Одержані оцінки мають прикладний сенс у задачах, де важливо контролювати появу повторюваних локальних конфігурацій у матричних даних. Зокрема, вони можуть бути використані для математичного моделювання та побудови матриць призначень у схемах розподілу «час-канал» (рядки відповідають часовим слотам, стовпці – каналам або ресурсам, колір – класу/стану), щоб зменшувати небажані повтори та штучні кореляції. Крім того, запропонований підхід придатний для формування контрольованих тестових масивів у задачах виявлення шаблонів у двовимірних даних (матрицях подій, картах спостережень, зображеннях), де потрібна гарантована відсутність заданого типу регулярності до певного порога розмірів

Опубліковано

2025-12-11